Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лекция 9. Способы определения плотности полезного ископаемого. Способы определение мощности залежи. Определение содержания полезного компонента

Лекция 9. Способы определения плотности полезного ископаемого. Способы определение мощности залежи. Определение содержания полезного компонента

Определение плотности полезных ископаемых в массиве. Под плотностью горной породы понимают отношение массы горной породы к ее полному объему, т.е.:

где Q -масса пробы полезного ископаемого,т; V- объем пространства, из которого добыта проба, м 3 .

Существуют три способа определения плотности полезных ископаемых в массиве – пробной вырубки, лабораторный и лабораторно-аналитический.

Способ пробной вырубки. Данный способ применяют при определении плотности сравнительно слабых пород, трещиноватых, пористых или сильно обогащенных посторонними включениями. В горной выработке или на уступе (при открытой разработке) тщательно выравнивают поверхность забоя или уступа и проводят вырубку полезного ископаемого 2-5 м 3 без применения ВВ. Всю добытую массу полезного ископаемого несколько раз взвешивают, а объем тщательно замеряют маркшейдерским способами. По формуле (15) определяем плотность полезного ископаемого.

Для получения надежных значений пробные вырубки повторяют несколько раз при одних и тех же условиях. Ошибка единичного определения плотности не должна превышать 2-3 % в благоприятных условиях и 4-5 % в неблагоприятных условиях.

Лабораторный способ. При лабораторном способе определения плотности твердых полезных ископаемых заключается во взвешивании:

— образца в воздухе;

— образца и определения в мерном сосуде его объема;

— в воде раздробленного в порошок образца.

Сосуд с водой до высыпания в него порошка также взвешивают. Эти две массы позволяют определить плотность полезного ископаемого.

Плотность можно определить методом гидростатического взвешивания. Для определения γ отбирают образцы (куски) полезного ископаемого массой 250-300 г. Если образцы пористые, не размокающие в воде, то определение ведут в следующей последовательности. Очищают образец от мелких осколков и пыли, и взвешивают на технических весах дважды с точностью до 0,1 г и определяют его среднюю массу (до насыщения водой) P1 (г).

Плотность сильно пористых и размокающих в воде пород определяют с парафинированием образцов по формуле

где P1 и P2 – массы образца до и после парафинирования; P3 – масса погруженного в воду запарафинированного образца; Δ – плотность парафина.

Плотность полезного ископаемого в залежи сложного строения

где – плотность отдельных разновидностей полезного ископаемого; Pi – вес, в качестве которого принимают мощности прослоев отдельных пород полезного ископаемого. Для получения более точных значений γ следует брать большее число образцов.

Лабораторно-аналитический способ основан на вычислении плотности в зависимости от содержания компонентов или примесей, оказывающих большое влияние на нее. Лабораторно-аналитический способ определения γ выполняется в специальных лабораториях на предприятиях или в научно-исследовательских организациях.

Способы определение мощности залежи.При равномерном распределении точек, в которых измерены численные значения мощности

При неравномерном распределении точек необходимо установить средневзвешенную мощность по формулам

где m i – мощность в различных точках замера; Si – площади «ближайших районов», тяготеющих к точкам замера; li – интервалы, тяготеющие к точкам замера.

Читайте так же:
Какой металл лучше для ножа

Определение содержания полезного компонента.. При определении среднего содержания полезного компонента возможно несколько случаев, из которых рассмотрим только часто встречающиеся.

При равномерном распределении точек, в которых устанавливают содержание, и незначительном колебании мощности m

При равномерном распределении точек, в которых устанавливают содержания, и значительном колебании мощности

При неравномерном распределении точек и незначительном колебании мощности m по площади

При опробовании залежи полезного ископаемого бороздовыми пробами разной длины

При неравномерном колебании точек, в которых определяются содержания, и значительном колебании мощности m

При вычислении средних по сечениям и выработкам

При неравномерном распределении точек опробования и значительных колебаниях γ и m

где ci – численные значения содержания в различных точках; Fi – площади «ближайших районов», тяготеющие к точкам; li – интервалы, тяготеющие к различным точкам (при вычислении по сечению); li’ – длина борозды при бороздовом опробовании.

При определении среднего содержания полезного компонента на некоторых месторождениях встречаются одна или две пробы с высоким содержанием, которые называются «ураганные пробы». Ураганные пробы могут оказать влияние на точность определения среднего содержания полезного компонента. В литературе есть много специальных методов их определения, необходимых для исключения погрешностей.

Лекция.10.Подсчет запасов полезных ископаемых и их практическое значение. Параметры подсчета запасов.Подсчет запасов полезных ископаемых имеет очень большое практическое значение при освоении месторождения. Оценку запасов выполняют раздельно по геологической изученности, экономической целесообразности, технологичности запасов и экономической эффективности их разработки.

Подсчитанные запасы обозначают, например угля, семизначным кодовым числом, в котором:

— первая цифра указывает на группу запасов по экономической эффективности разработки, а именно: 1- эффективные, 2- малоэффективные и 3- не эффективные;

— вторая цифра указывает технологическую группу запасов: 1- высокотехнологичные,2- технологичные, 3- ограниченно технологичные, 4- нетехнологичные;

-третья цифрахарактеризует направления использования углей: 1- для коксования, 2- для энергетики, 3- другие направления использования (получения жидкого топлива, горного воска и др.);

— четвертая, пятая, шестая, седьмая цифры характеризуют запасы по степени изученности: 1- категория А, 2- категория В, 3- категория С, 4- категория Д.

Отсутствие запасов одной из категорий обозначают нулем. Например, код 1210230 означает, что подсчитаны эффективные, технологические запасы коксующихся углей по категориям В и С.

Параметры подсчета запасов. Материалы, необходимые для подсчета запасов на каждой стадии освоения месторождений и другие требования определяет ГКЗ. Они состоят из текстовой, цифровой и графической частей. Для каждого предприятия определены пакет необходимых графических материалов, масштабы и другие условия. Маркшейдерские графические материалы должны быть масштаба 1:500 — 1: 10000. Результаты документации и опробования по разведочным и горным выработкам, маркшейдерские съемки должны быть отражены на планах и разрезах. На планах и разрезах с учетом степени изученности месторождения производят построение контуров участков (блоков) по категориям запасов.

Основными параметрами подсчета запасов являются площадь S, мощность m, плотность , содержание c .

Читайте так же:
Как просверлить плитку на полу

Запасы руды (или полезного ископаемого)

Запасы полезного компонента (или металла)

где S– площадь залежи или его части, м 2 ; m- мощность залежи, м; c — среднее содержание полезного компонента, %; — плотность полезного ископаемого в массиве, т/м 3 .

Расчетные способы определения объема потребленной электроэнергии (мощности) и основания их применения

    В случаях установления фактов безучетного или бездоговорного потребления, отсутствия у потребителя прибора учета или не передачи показаний прибора учета в установленные сроки более двух месяцев, начиная с 3-го расчетного периода, а также в случае 2-кратного недопуска к расчетному прибору учета, применяются следующие расчетные способы определения объема потребления электрической энергии (мощности):

а) объем потребления электрической энергии (мощности) в соответствующей точке поставки, МВтч, определяется:

если в договоре имеются данные о величине максимальной мощности энергопринимающих устройств в соответствующей точке поставки, по формуле:

,

Pмакс — максимальная мощность энергопринимающих устройств, относящаяся к соответствующей точке поставки, МВт;

T — количество часов в расчетном периоде, времени, в течение которого осуществлялось безучетное потребление электрической энергии, но не более 8760 часов.

если в договоре, обеспечивающем продажу электрической энергии (мощности) на розничном рынке, отсутствуют данные о величине максимальной мощности энергопринимающих устройств или если при выявлении безучетного потребления было выявлено использование потребителем мощности, величина которой превышает величину максимальной мощности энергопринимающих устройств потребителя, указанную в договоре, по формулам:

  • для однофазного ввода:

,

  • для трехфазного ввода:

,

Iдоп.дл. — допустимая длительная токовая нагрузка вводного провода (кабеля), А;

Uф.ном. — номинальное фазное напряжение, кВ;

— коэффициент мощности при максимуме нагрузки. При отсутствии данных в договоре коэффициент принимается равным 0,9;

б) почасовые объемы потребления электрической энергии в соответствующей точке поставки, МВтч, определяются по формуле:

,

где W — объем потребления электрической энергии в соответствующей точке поставки, МВтч.

  • для однофазного ввода:

,

  • для трехфазного ввода:

,

где T бд — количество часов, в течение которого осуществлялось бездоговорное потребление, но не более чем 8760 часов, ч.

Основанием применения расчетных способов определения объема потребленной электрической энергии являются:

Выявление факта безучетного потребления в результате проверок приборов учета потребителей и составления сетевой организацией акта о неучтенном потреблении электрической энергии.

С даты составления акта о неучтенном потреблении электрической энергии до восстановления надлежащего учета электрической энергии и проведения процедуры допуска в эксплуатацию прибора учета (измерительного комплекса).

Выявление факта бездоговорного потребления электрической энергии потребителем в результате самовольного присоединения энергопринимающих устройств к электросетевому хозяйству, в том числе в период введенного полного ограничения потребления электрической энергии за задолженность за потребленную электрическую энергию.

В случае 2-х кратного недопуска к приборам учета

Непредоставления показаний прибора учета в установленные сроки начиная в течении 2-х и более расчетных периодов, начиная с 3-го расчетного периода.

Отсутствие прибора учета (истечение межповерочного срока) в течении 2-х и более расчетных периодов, начиная с 3-го расчетного периода.

Читайте так же:
Как соединить провода на люстру

Измерение мощности в цепях постоянного тока

Различные методы измерения мощности и способы подключения приборов в цепях постоянного тока.

Анализ результатов измерений.

Основные теоретические положения

Мощность – физическая величина, равная выполняемой работе за единицу времени, что равносильно скорости изменения энергии системы. В частности, электрическая мощность – это величина, характеризующая скорость передачи или преобразования электрической энергии в другие виды энергии, например, механическую, тепловую, световую и т. д.

Мощность в цепях постоянного тока определяется выражением P = UI, где U – напряжение, приложенное к нагрузке, В, I ток, протекающий через нагрузку, А. Единицей измерения электрической мощности является ватт (Вт). Из приведенного уравнения следует, что мощность P можно определить косвенным методом, измеряя вольтметром напряжение U на нагрузке и амперметром – ток I, протекающий через нагрузку. Перемножив результаты измерений U и I, получим значение мощности.

На рис. 1 приведены две схемы включения вольтметра и амперметра. Выбор той или иной схемы обусловлен допускаемой методической погрешностью измерения. Погрешность зависит от соизмеримости внутренних сопротивлений приборов с сопротивлением нагрузки Rн.

Рис. 1. Схемы включения приборов для измерения мощности

в цепи постоянного тока.

Схема рис. 1а применяется, когда сопротивление нагрузки Rн много меньше сопротивления вольтметра Rв; а схема рис. 1б – когда сопротивление нагрузки Rн много больше сопротивления амперметра Ra. Если этими условиями пренебречь и допустить, что Rн = Rв для схемы рис. 1а и Rн = Ra для схемы рис. 1б, то относительная погрешность измерения мощности составит 100 %.

Практически удобнее измерять мощность одним прибором – ваттметром. Для определения мощности ваттметру нужна информация о токе и напряжении, и он должен уметь их перемножать. Таким прибором является электродинамический ваттметр, состоящий из подвижной катушки, расположенной внутри неподвижной катушки.

К подвижной катушке подключают напряжение нагрузки, а через неподвижную катушку пропускают ток нагрузки. Взаимодействие магнитных полей катушек заставляет подвижную катушку поворачиваться на угол, пропорциональный мощности. Направление поворота зависит от направления токов в катушках, поэтому включать его в цепь необходимо так, чтобы начала обмоток катушек были подключены в сторону источника питания (генератору). На клеммах ваттметра начала обмоток обозначены звездочкой (*U и *I). Их называют генераторными зажимами. Если токовый генераторный зажим подключить ошибочно в сторону нагрузки, то стрелка прибора будет отклоняться влево от нулевой отметки и отсчет показаний будет невозможен. Генераторный зажим обмотки напряжения, в целях уменьшения погрешности измерения, может быть включен по схеме рис. 2а или рис. 2б.

Рис. 2. Схема включения ваттметра в цепь постоянного тока.

Схема рис. 2а применяется, когда сопротивление нагрузки Rн много больше сопротивления токовой цепи ваттметра Ra; а схема рис. 2б – когда сопротивление нагрузки Rн много меньше сопротивления цепи напряжения ваттметра Rв. Сопротивления цепей напряжения и тока указаны на циферблате прибора. Ваттметр сконструирован так, что практически чаще пользуются схемой рис. 2а.

Читайте так же:
Как правильно подсоединить электросчетчик

Мощность электрического тока

Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.

Генератор на электростанции

Генератор на электростанции

Определение

Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:

В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:

Это вольтампер (ВА) и производные от нее кВА, мВА.

Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.

В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:

  • активная;
  • реактивная;
  • полная;
  • комплексная.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Формулы для расчета мощности

Реактивная

Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.

Формула расчета:

Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).

Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:

  1. Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
  2. Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.

Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).

Конденсаторные батареи

Полная

Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.

Формула расчета:

S = U*I, результат измеряется в вольтамперах.

Читайте так же:
Как соединить концы проводов

Если использовать для расчета активную и реактивную составляющую, то полное мощностное значение определяется извлечением квадратного корня из суммы их квадратов.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.

Цифровой варметр

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.

Фазометр

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector