Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мой секрет

При какой температуре плавятся металлы таблица. Физические свойства металлов

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой — плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие — до 600 °C: свинец, цинк, олово;
  2. среднеплавкие — от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие — от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина — градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы — непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий — 660 °C;
  2. температура плавления меди — 1083 °C;
  3. температура плавления золота — 1063 °C;
  4. серебро — 960 °C;
  5. олово — 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец — 327 °C;
  7. температура плавления железо — 1539 °C;
  8. температура плавления стали (сплав железа и углерода) — от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) — от 1100 °C до 1300 °C;
  10. ртуть — -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл — ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия — 2519 °C , у железа — 2900 °C, у меди — 2580 °C, у ртути — 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов — у рения — 5596 °C . Наибольшая температура кипения — у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым — осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа — очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах — это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл — серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов . Температура плавления металла — температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное атмосферное давление не влияет .

Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов . Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).

Классификация металлов по температуре плавления

  1. Легкоплавкие металлы , температура плавления которых колеблется до 600 градусов Цельсия, например цинк, олово, висмут .
  2. Среднеплавкие металлы , которые плавятся при температуре от 600 до 1600 градусов Цельсия: такие как алюминий, медь, олово, железо .
  3. Тугоплавкие металлы , температура плавления которых достигает более 1600 градусов Цельсия — вольфрам, титан, хром и др.
  4. — единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов по Цельсию.
Читайте так же:
Как делают сверла на заводе видео

Таблица температур плавления металлов и сплавов

Температура плавления,

градусов Цельсия

При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается .

Интересный факт

Не стоит путать понятия «температура плавления металла» и «температура кипения металла» — для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях , разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

При какой температуре плавится металл в градусах

Вольфрам

Вольфрам применяется везде, где приходится работать с высокой температурой. Ведь по жаропрочности с ним не сравнится ни один другой металл! У вольфрама из всех металлов самая высокая температура плавления и, соответственно, самая высокая рабочая температура. Он также отличается исключительно низким коэффициентом теплового расширения и высоким уровнем стабильности формы. Вольфрам практически неразрушим. Мы изготавливаем из этого материала, в частности, компоненты для высокотемпературных печей, ламп, медицинской техники и систем нанесения тонких покрытий.

Атомный номер74
Номер CAS7440-33-7
Атомная масса183,84 [г/моль]
Точка плавления3420 °C
Точка кипения5555 °C
Плотность при 20 °C19,25 [г/см 3 ]
Кристаллическая структуракубическая объемноцентрированная
Коэффициент линейного теплового расширения при 20 °C4,4 × 10 -6 [м/(мК)]
Теплопроводность при 20 °C164 [Вт/(мК)]
Удельная теплоемкость при 20 °C0,13 [Дж/(гК)]
Электропроводность при 20 °C18,2 × 10 6 [См/м]
Удельное электрическое сопротивление при 20 °C0,055 [(Ом·мм 2 )/м]
Чистый вольфрам или сплав?

Качеству нашей продукции можно доверять. При производстве вольфрамовых изделий методом порошковой металлургии мы собственными силами выполняем весь технологический процесс — от подготовки металлического порошка до выпуска конечного продукта. В качестве сырья используется только чистейший оксид вольфрама. Так мы гарантируем исключительную чистоту материала. Мы гарантируем степень чистоты вольфрама 99,97 % (чистота металла без молибдена). Остаток преимущественно составляют следующие элементы:

ЭлементТипичное макс. значение
[мкг/г]
Гарантированное макс. значение
[мкг/г]
Al115
Cr320
Cu110
Fe830
K110
Mo12100
Ni220
Si120
C630
H5
N15
O220
Cd15
Hg1
Pb15

Die Anwesenheit von Cr (VI) und organischen Verunreinigungen kann durch den Produktionsprozess ausgeschlossen werden (mehrfache Wärmebehandlung bei Temperaturen über 1.000°C in H2.)

Читайте так же:
Как припаять медь к нержавейке
МатериалХимический состав (масс. %)
W (чистый)> 99,97 % W
WK6560–65 мкг/г K
WVM30–70 мкг/г K
WVMW15–40 мкг/г K
S-WVMW15–40 мкг/г K
WLWL05
WL10
WL15
WL20
0,5 % La2O3
1,0 % La2O3
1,5 % La2O3
2,0 % La2O3
WL-S1,0 % La2O3
WLZ2,5 % La2O3 / 0,07 % ZrO2
WReWRe05
WRe26
5,0 % Re
26,0 % Re
WCu10–40 % Cu
Тяжелые сплавы высокой плотности
на основе вольфрама
Densimet ®
Inermet ®
Denal ®
1,5–10 % Ni, Fe, Mo
5–10 % Ni, Cu
2,5–10 % Ni, Fe, Co

Мы оптимизируем свойства вольфрам в зависимости от планируемого применения. За счет различных легирующих добавок можно регулировать следующие характеристики:

  • физические свойства (температура плавления, плотность, электропроводность, теплопроводность, тепловое расширение, работа выхода электронов и др.)
  • механические свойства (прочность, ползучесть, пластичность и др.)
  • химические свойства (коррозионная стойкость, пригодность к обработке травлением)
  • обрабатываемость (механическая обработка, поведение при деформации, свариваемость)
  • рекристаллизационные свойства (температура рекристаллизации)

Но это еще не все! Используя особые технологии производства, мы можем изменять и другие свойства вольфрама в широком диапазоне. Результат: вольфрамовые сплавы с различным набором свойств, максимально адаптированные к требованиям конкретной области применения.

Мы добавляем в вольфрам 60–65 мкг/г калия и используем получаемый материал для производства проволоки с вытянутой многослойной микроструктурой. Такая микроструктура придает материалу превосходные высокотемпературные свойства, например хорошее сопротивление ползучести и стабильность формы. При использовании специальных технологий производства материал WK65 может выдерживать больше нагрузок, чем WVM.

Сплав WVM состоит практически из чистого вольфрама, легированного минимальным количеством калия. Мы выпускаем WVM преимущественно в форме прутков и проволоки, которые идут на изготовление спиралей испарителей, нитей накала и компонентов оборудования для эпитаксии. Также выпускается листовой WVM, из которого изготавливают лодочки испарителей. Благодаря легированию специальными присадками и продуманной термомеханической обработке материал получает многослойную «штапельную» микроструктуру, которая обеспечивает повышенную стабильность формы при высокой температуре.

Материалы WVMW и S-WVMW были разработаны специально для изготовления анодов диаметром более 15 мм в короткодуговых лампах. Для обоих композитов мы применяем практически чистый вольфрам с небольшой добавкой калия. S-WVMW идеально подходит для стержней диаметром больше 30 мм. Специальные технологии производства, которые мы используем для изготовления S-WVMW, позволяют добиваться высокой плотности материала в стержневом сердечнике.

Мы добавляем в наш вольфрам 0,5, 1,0, 1,5 или 2 масс. % оксида лантана (La2O3), чтобы повысить его сопротивление ползучести и температуру рекристаллизации. Наш материал WL также легче поддается механической обработке благодаря равномерному распределению частиц оксида в его структуре. Работа выхода электронов у WL значительно ниже, чем у чистого вольфрама. По этой причине WL широко используется для изготовления источников ионов и электродов ламп.

Это особая разновидность WL, разработанная специально для изготовления стержней (стоек) для крепления электродов газоразрядных ламп высокого давления. Мы используем специальные технологии производства, благодаря которым материал получает более мелкозернистую микроструктуру, чем стандартный вольфрам – оксид лантана. Такая микроструктура обеспечивает более высокое сопротивление разрушению, чем у стандартных WL и WVM, даже после высокой термической нагрузки. Именно поэтому WL-S является идеальным материалом для крепежных стоек, которые должны надежно удерживать анод и катод в нужном положении в течение всего срока службы газоразрядной лампы высокого давления.

Мы добавляем в вольфрам оксид лантана и оксид циркония, чтобы обеспечить высокое сопротивление ползучести в сочетании с низкой работой выхода электронов. WLZ — это идеальный материал для катодов, работающих под большим напряжением. WLZ обладает отличными характеристиками зажигания и остается стабильным при экстремально высоких температурах.

Для обеспечения большей пластичности и более низкой температуры перехода из хрупкого в вязкое состояние мы легируем вольфрам рением. Помимо прочего, вольфрам-рений имеет более высокую температуру рекристаллизации и более высокое сопротивление ползучести. Мы используем WRe в стандартных составах — WRe05 и WRe26 — в качестве материала для термоэлементов, которые должны выдерживать температуру более 2000 °C. Этот материал также используется в аэрокосмической промышленности.

Композитные материалы WCu состоят из пористой вольфрамовой матрицы, пропитанной примерно 10–40 масс. % меди. Мы используем WCu прежде всего для производства высоковольтных выключателей и электродов для электроэрозионной обработки (под торговым названием Sparkal®). Для WCu характерны низкая склонность к выгоранию, хорошая электропроводность, высокая теплопроводность и низкий коэффициент теплового расширения. Наши композиты WCu используются также в качестве подложек и теплоотводов в радиолокационных установках, оптоэлектронике (лазерные диоды, волоконная оптика) и высокочастотных усилителях. Чтобы оптимально адаптировать термические свойства к конкретным условиям применения, мы целенаправленно регулируем содержание меди в композитах.

Хорош во всех отношениях. Свойства вольфрама

Вольфрам относится к группе тугоплавких металлов, то есть металлов, температура плавления которых выше, чем у платины (1772 °C). В тугоплавких металлах энергия связи между отдельными атомами особенно высока. Такие металлы отличаются высокой температурой плавления и одновременно низким давлением пара, хорошей жаропрочностью, а в случае вольфрамо-медных композитов — еще и высоким модулем упругости. Для них также характерны низкий коэффициент теплового расширения и относительно высокая плотность.

Вольфрам имеет самую высокую температуру плавления среди всех металлов, а также чрезвычайно высокий модуль упругости. В целом его свойства аналогичны молибдену. Оба металла относятся к одной группе в периодической системе химических элементов. Однако некоторые свойства вольфрама более ярко выражены по сравнению с молибденом. Благодаря превосходным термическим свойствам вольфрам легко выдерживает самые высокие температуры.

Читайте так же:
Как правильно измерить угол

Чтобы придать выпускаемому вольфраму и его сплавам нужные свойства, мы используем разные виды и количества легирующих элементов и соответствующим образом настраиваем технологический процесс.

Мы используем преимущественно легированные вольфрамовые материалы. Например, в WVM и WК65 добавляется небольшое количество калия. Калий положительно влияет на механические свойства материала, особенно при высоких температурах. Добавлением La2O3 можно не только улучшить обрабатываемость сплава, но и, что особенно важно, снизить работу выхода электронов, что позволит использовать вольфрам для изготовления катодов.

Рений мы добавляем, чтобы повысить пластичность вольфрама. Медь же улучшает электропроводность материала. Благодаря хорошей обрабатываемости наши тяжелые сплавы подходят также для производства изделий сложной геометрии. Они могут использоваться, например, в качестве материала для экранирующих пластин или амортизирующих и абсорбирующих компонентов.

Вольфрам обладает самой высокой точкой плавления среди всех тугоплавких металлов, довольно низким коэффициентом теплового расширения и относительно высокой плотностью. Нельзя также не отметить хорошую электропроводность и превосходную теплопроводность этого металла. Все эти свойства выражены в вольфраме гораздо сильнее, чем в молибдене. В периодической системе химических элементов вольфрам отнесен к той же группе, что и молибден, но располагается на период ниже.

Физические свойства вольфрама также зависят от температуры. Ниже приведены сравнительные графики основных характеристик материала.

При скольки градусах плавится металл

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов.

Таблица 1. Плавки цветных металлов

твердого при 20 °С

Сварка и плавка цветных металлов

Сварка меди. Температура плавки металла Cu, почти в шесть раз превышает температуру плавки стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064°С) ниже температуры плавления меди (1083°С). При затвердевании жидкой меди эвтектика располагается по границам зерен, делает медь хрупкой и склонной к образованию трещин. Поэтому основной задачей при сварке меди является защита его от окисления и активное раскисление сварочной ванны.

При скольки градусах плавится металл

Наиболее распространенное газовое сварки меди ацетиленокисневим пламенем с помощью горелок, которые в 1,5…2 раза мощнее горелки для сварки сталей. Присадочным металлом есть медные прутки, содержащие фосфор и кремний. Если толщина изделий более 5…6 мм, их сначала подогревают до температуры 250…300°С. Флюсами при сварке является прожаренная бура или смесь, состоящую из 70% буры и 30% борной кислоты. Чтобы повысить механические свойства и улучшить структуру наплавленного металла, медь после сварки проковывают при температуре около 200…300°С. Потом ее снова нагревают до 500-550°С и охлаждают в воде. Медь сваривают также электродуговым способом электродами, в струе защитных газов, под слоем флюса, на конденсаторных машинах, способом трения.

Сварка латуни. Латунь – это сплав меди с цинком (до 50%). Основное загрязнение при этом – испарение цинка, в итоге чего шов теряет свои качества, в нем возникают поры. Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, при котором на поверхности ванны создается пленка тугоплавкого оксида цинка, уменьшающая дальнейшее выгорание и испарение цинка. Флюсы используют такие же, как и при сварке меди. Они создают на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь сваривают также в защитных газах и на контактных машинах.

Сварка бронзы. В большинстве случаев бронза – это литейный материал, поэтому

сварку применяют при исправлении дефектов или во время ремонта. Чаще всего применяют сварку металлическим электродом. Присадочным металлом является прутки того самого состава, что и основной металл, а флюсами или электродным покрытием – хлористые и фтористые соединения калия и натрия.

Сварка алюминия. Основными факторами, затрудняющими сварку алюминия, является низкая температура его плавления (658°С), большая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, которые имеют температуру плавления 2050°С, поэтому технология плавки цветных металлов, таких как медь или бронза, не подходит для плавки алюминия. Кроме того, эти оксиды слабо реагируют как с кислыми, так и основными флюсами, поэтому плохо удаляются из шва.

При скольки градусах плавится металл

Чаще всего используют газовую сварку алюминия ацетиленовым пламенем. В последние годы значительно распространилось также автоматическая дуговая сварка металлическими электродами под флюсом и в среде аргона. При всех способах сварки, кроме аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят фтористые и хлористые соединения лития, калия, натрия и других элементов. Как присадочный металл при всех способах сварки используют проволоку или стержни того же состава, что и основной металл.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка сплавов алюминия. Сплавы алюминия с магнием и цинком сваривают без

особых осложнений, так же как и алюминий. Исключением является дюралюминий – сплавы алюминия с медью. Эти сплавы термически упрочняются после закалки и следующего старения. Когда температура плавки цветных металлов свыше 350°С в них происходит снижение прочности, которое не восстанавливается термической обработкой. Поэтому при сварке дюралюминия в зоне термического влияния прочность уменьшается на 40…50%. Если дюралюминий сваривать в защитных газах, то такое снижение может быть восстановлено термической обработкой до 80…90% по отношению к прочности основного металла.

Читайте так же:
Как сделать регулировку тока на зарядном устройстве

Сварка магниевых сплавов. При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами через низкое качество сварных швов до настоящего времени не применяется. При сварке магниевых сплавов наблюдается значительный рост зерна в около шовных участках и сильное развитие столбчатых кристаллов в сварном шве. Поэтому предел прочности сварных соединений составляет 55…60% предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

При скольки градусах плавится металл

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

При скольки градусах плавится металл

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Содержание статьи

При скольки градусах плавится металл

  • Какая температура плавления металлов
  • Какой металл самый твердый на земле
  • Как расплавить латунь

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях, разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

При какой температуре плавится и кристаллизуется олово

К одному из самых первых металлов, открытых в древности, относится олово. Оно имеет серебристо-белый цвет с небольшой массой. Посуда из него прекрасно сохраняет запах, а также вкус напитков. Данный металл использовался намного раньше открытого впоследствии железа, а его сплав с медью (бронза) является первым сплавным веществом, созданным человеком. Это получилось из-за того, что температура плавления олова весьма низкая, что позволяло обрабатывать металл еще при зарождении металлургии.

плавка

Свойства и особенности олова

Оловянные сплавы имеют малый коэффициент трения, из-за чего их используют в разнообразных антифрикционных материалов. Помимо этого, данным свойством они могут наделять и прочие вещества. Это значительно продлевает период эксплуатации механизмов, машин, значительно снижая потери на трение. К интересной особенности данного материала относится его увеличение объема на 25,6 % при температуре + 13,2 °С. Этот металл называется серым.

Читайте так же:
Как начертить зубья шестерни

При снижении температуры до — 33,0 °С вещество кристаллизуется и переходит в порошкообразное состояние. При взаимодействии серого и белого олова происходит передача свойств белому металлу. Разнообразные оловянные сплавы широко используются электротехнической промышленностью. На вопрос при какой температуре плавится олово существует однозначный ответ: + 231,9 °С или же 505,1 по кельвину. Это весьма удобно для радиолюбителей, ведь паять детали с такой температурой можно без особых проблем даже в домашних условиях. Температура плавления, при которой олово переходит в жидкое состояние невысока, что облегчает его использование.

Высокий интерес представляет данное вещество из-за своей хорошей коррозийной стойкости. Именно оловянное покрытие является древнейшим способом защиты разнообразных предметов из металлов, в том числе и консервных банок. Помимо этого, данный элемент имеет свойство объединять многие металлы с приданием им устойчивости к внешним воздействиям. Это используется при лужении различной посуды и прочих бытовой утвари, а также электротехниками. Оловянно-свинцовые сплавы относятся к мягким компонентам, что удобно при пайке радиотехнических деталей. Эти припои могут иметь различное количество компонентов и соответствующее обозначение. К примеру, пос-61 означает, что оловянная составляющая имеет 61 %, а свинцовая – 39 %.

Человеческое тело содержит оловянные вещества в костях, где они помогают обновлению костной ткани. Для нормальной жизнедеятельности организму необходимо получать ежедневно порядка 2-10 мг металла в сутки. Этот макроэлемент содержится в принимаемой пище, однако усваивается всего лишь до 5 % от общего поступающего количества.

Температура плавления

Особую известность имеют соединения, использующиеся в качестве припоя радиолюбителями. Температура плавления в сплаве ПОС-40 составляет + 235,0 °С. Содержащийся в припоях свинец является довольно мягким материалом, имеющий серый цвет со светлым оттенком. Он плавится при значении + 327,0 °С, что делает его идеальной составляющей для олова. Припой ПОС-61 может плавиться при температуре + 191,0 °С, чем весьма удобен для пайки небольших радиодеталей.

Специалисты знают, при какой температуре олово плавится. Данная величина составляет + 231,9 °С, а при + 231,0°С оно остается твердым. Температурный показатель кипения этого вещества намного выше – 2 600 градусов Цельсия. В зависимости от компонентов, входящих в состав оловянного сплава изменяется температурный показатель плавления. Этот материал превосходно гнется даже в холодном состоянии, а нагреваясь, он начинает приобретать свойства пластилина. Температура плавления свинца и оловянной составляющей разнится, однако их сплавы обладают широким применением. При плавке применяются специальные флюсы, шлаки, а также присадки для получения необходимой степени качества и сорта металла. Из-за его возможности расплавляться при низкой температуре он является стратегически важным сырьем. Сплавы с участием оловянного компонента очень легко обрабатываются и применяются при соединении конструктивных деталей и узлов с герметичным швом. К наиболее известным бытовым соединениям относятся припои, температура плавления в которых олова и свинца зависит от их количества.

припои

Применение и вторичная переработка

Главным достоинством, определяющим область применения оловянного вещества, является его высокая стойкость к коррозии. Это свойство оно передает и прочим металлам, участвующим в сплаве. Данная способность противодействия химически агрессивным веществам делает материал весьма ценным при защите стальных изделий. Тончайший слой покрывает практически половину всей производимой стальной жести.

Данный металл используется при производстве тонкостенных труб, которые применяются исключительно при положительных температурных показателях. К ограничению сферы применения относится низкая температура кристаллизации олова. Бытовые изделия содержат олово в сантехническом оборудовании, разнообразной фурнитуре и прочих аксессуарах. Материал обладает высокой гигиеничностью, низким температурным показателем плавления олова, а также весьма низкой теплопроводностью по сравнению со сталью. По этим характеристикам его активно используют для изготовления умывальников и ванн.

Это вещество присутствует в домашней посуде, ювелирных украшениях, а также небольших элементах декора и быта. Это обусловлено хорошим плавлением материала при невысокой температуре, ковкости и мягкому цвету. Бронзовые сплавы имеют отличную прочность, а также высокую стойкость к коррозии. Это делает бронзу превосходным строительно-декоративным материалом.

Помимо припоев, которые удобно расплавлять в домашних условиях и промышленном производстве, сплавы применяются даже для производства музыкальных инструментов. Из различных сплавов отливаются церковные колокола и органные трубы. От количества составляющих элементов зависит тон изделий. Невысокая температура затвердевания материала и простота обработки позволяют изготавливать уникальные изделия музыкального направления.

Для вторичной переработки используют старые консервные жестяные баночки. Они имеют защитное оловянное покрытие с некоторыми примесями. Их количество для продуктовой тары имеет строгое ограничение. Величина оловянного состава при лужении жестяной баночки не должна превышать 0,14 %, а по свинцу данный показатель составляет 0,04 %. Для безопасности здоровья дополнительно применяются специальные лаки, которые предохраняют металлическую основу от разрушения под воздействием соли, сахара, а также органических кислот. Средняя банка содержит порядка 0,5 г оловянного компонента. Для мировых масштабов это весьма внушительная цифра. Доля этого вторично использованного сырья в развитых государствах доходит до 30 %.

Олово используется практически во всех направлениях современного производства. Спустя тысячелетия после своего открытия, металл остается востребованным веществом, обладающим широким спектром уникальных свойств.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector