Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Алюминий АМг6

Алюминий АМг6

Получение алюминиевого сплава АМг6: для выплавки алюминия АМг6 подготавливают шихту и затем производят ее плавку. Загрузка шихтовых материалов в печь при приготовлении деформируемых алюминиевых сплавов должна производиться в соответствии с общими правилами и учетом наименьших потерь металла при плавке в виде угара и минимального загрязнения сплава неметаллическими включениями. Наиболее рациональным в этом отношении является следующий порядок загрузки шихты. Сначала в печь загружают чушковый первичный алюминий, потом бракованные слитки, затем отходы первого сорта и рафинированный переплав, затем лигатуры. Медь может быть введена в расплав как в виде алюминиевомедной лигатуры, так и в виде электролитической меди и отходов.

Температура расплава перед введением меди должна быть в пределах 710—750° С. Легкоокисляющиеся металлы (магний, цинк) вводятся в расплав в чистом виде после полного расплавления всей шихты при температуре расплава 660—720° С.

Магний вводят в расплав с помощью колокольчика (дырчатой коробки), а цинк — погружают в расплав ложкой.

Перед введением легкоокисляющих металлов расплав очищают от шлака.

Для обеспечения более равномерного распределения легирующих компонентов после введения каждого из них расплав тщательно перемешивают.

В случае приготовления мягких сплавов (АВ, АМц) рекомендуется загружать и плавить составляющие шихты одновременно.

Технология приготовления деформируемых алюминиевых сплавов, содержащих более 5% Mg, имеет некоторые особенности вследствие повышенной их окисляемости в жидком состоянии.

Алюминиевомагниевые сплавы с высоким содержанием магния обладают повышенной склонностью к образованию горячих трещин в слитках непрерывного литья. Это объясняется малой прочностью сплавов при высоких температурах и формированием на поверхности слитка непрочной и рыхлой окисной пленки магния. Так, по мнению В. А. Ливанова, микротрещины, которые возникают на поверхности, становятся местами концентрации напряжений и при недостаточно равномерном охлаждении вызывают появление горячих трещин. На горячеломкость алюминиевомагниевых сплавов (АМг5В и АМг6) большое влияние оказывает содержание основных компонентов и примесей.

Исследованиями установлено, что для снижения горячеломкости сплавов АМг5В и АМг6 необходимо:

1) поддерживать отношение содержания железа и кремния выше 1,5;

2) выдерживать содержание марганца в сплаве 0,50—0,55%;

3) производить подшихтовку бериллием в количестве 0,0001 — 0,0002%.

Присадка бериллия не только снижает склонность сплава к горячеломкости, но и обеспечивает серебристый цвет поверхности слитка.

Для получения слитков без грубых скоплений интерметаллических соединений содержание титана и ванадия в сплавах АМг5В и АМг6 должно быть по 0,02—0,05% каждого.

Таким образом, при расчете и составлении шихты для алюминиевомагниевых сплавов должны быть учтены изложенные выше особенности.

Плавка алюминиевых сплавов с высоким содержанием магния должна проводиться по возможности в печах, исключающих контакт печных газов с расплавом, с применением защитных флюсов.

После расплавления всех составляющих шихты расплав тщательно перемешивают, снимают шлак с поверхности расплава и отбирают жидкий металл для образцов на экспресс-анализ. Отбор проб рекомендуется производить при температуре 710— 740° С из средней зоны по глубине ванны расплава.

В случае положительных результатов экспресс-анализа расплав подвергают рафинированию.

Из сплава АМг6 выпускается много видов проката, один из самых высокотехнологичных это биметалические листы.

Производство биметалла: алюминиевый сплав — сталь Х18Н10Т. Для соединения разнородных металлов, которые не поддаются сварке плавлением, широко используют метод биметаллических проставок; в этом случае сварку плавлением производят между однородными металлами, а роль соединительного шва разнородных металлов выполняет многослойный металл, который в настоящее время получил название конструкционного материала. Основное его отличие состоит в том, что толщина покрытия должна быть равной или несколько больше основного слоя. В качестве такого материала хорошо зарекомендовал себя биметалл сплав АМг6-сталь Х18Н10Т

Большая толщина алюминиевого покрытия обусловливается как конструкцией, так и необходимостью интенсивного отвода тепла при сварке с границы соединения, чтобы предотвратить прохождение диффузионных процессов, вызывающих охрупчивание переходного слоя.

В настоящее время разработана технология прокатки биметаллических листов стали с алюминиевыми сплавами, обеспечивающая равное соотношение слоев и высокую стабильность свойств.

При теплой прокатке стали Х18Н10Т пластические характеристики при одних и тех же обжатиях практически в 2 раза выше, чем при холодной прокатке. В отличие от малоуглеродистой стали, у стали Х18Н10Т провалы пластичности в температурном интервале 200-400° С отсутствуют.

Поэтому совместную прокатку нержавеющей стали с алюминиевыми сплавами целесообразно проводить при повышенных температурах.

В работе описан метод асимметричной прокатки конструкционного биметалла сталь—алюминиевые сплавы, который предусматривает однопроходную схему с обжатием алюминиевого сплава до 80%. При такой прокатке происходит в основном пластическая деформация алюминиевого сплава. Сталь при этом не деформируется.

Читайте так же:
Частотник для коллекторного двигателя

Несмотря на преимущества этого метода (сталь остается недеформированной), ширина листа ограничена силовыми возможностями оборудования и обычно не превышает 250—300 мм.

Более благоприятна схема получения таких листов прокаткой симметричным пакетом, поскольку она исключает изгиб полосы в процессе деформации.

Симметричный пакет представляет собой комбинацию четырех листов, сложенных в следующей последовательности: АМг6-Х18Н10Т-Х18Н10Т-АМг6. Листы сплава АМг6 имеют припуск до 30 мм по отношению к стальным листам, что позволяет крепить пакет и исключает попадание смазки в процессе прокатки на границу соединения слоев.

Стальные листы сваривают по торцам (со стороны задачи и выхода пакета из валков). Прокатка симметричных пакетов (толщина стального слоя в пакете 10 мм) с соотношением слоев АМг6 и стали 1,5 : 1 при температуре 370-390° С, с суммарным обжатием 55—60% и с обжатием за проход от 10 до 30% показала, что увеличение частного обжатия до 30% приводит к гофрам, надрывам и полному разрушению стального слоя.

В процессе совместной прокатки в сплаве АМг6 возникают сжимающие напряжения, в то время как в стальном слое — растягивающие, в результате которых может разрушиться стальной слой (см. рисунок).

Температура нагрева пакетов ограничивается интервалом 370—390° С, иначе в средней части биметаллического пакетанаблюдается большой перепад температуры по ширине, достигающий 40—50 град.

Несмотря на то что к этому времени образуются прочные металлические связи, высокие дополнительные напряжения, возникающие в листе АМг6 вследствие неравномерной деформации, вызывают отрыв слоя АМг6 от стали и образуют складки и пузыри.

Использование для смазки охлаждения эмульсии создает более равномерное распределение температуры по всей площади пакета, в результате складки и пузыри не образуются.

Исследования показали, что при прокатке биметалла алюминиевый сплав — сталь Х18Н10Т в симметричных пакетах окисная пленка легко разрушается при небольших обжатиях. Возникающие средние удельные давления 35—60 кГ/мм 2 вполне достаточны для образования металлических связей.

Появившиеся мостики сцепления развиваются в процессе дальнейшей деформации, так как средние рабочие напряжения в последующих проходах велики, а относительная площадь, занимаемая окисными пленками, значительно уменьшается с увеличением степени деформации.

Поэтому наблюдается повышение прочности сцепления слоев с увеличением суммарной степени деформации.

Увеличение прочности сцепления слоев имеет свой максимум, который обусловливается прочностными свойствами более мягкого металла — алюминия.

Рациональное распределение обжатий при достаточно развитых металлических связях оказывает влияние на качество поверхности стали. Особое значение это имеет при наклепе стали, когда пластические свойства ее резко снижаются. В результате действия растягивающих напряжений на стали появляется волнистость. Это очень заметно на листах, имеющих более толстое покрытие сплава АМг6, так как неравномерность деформации в данном случае несколько выше.

Обычно в процессе многочисленных опытов подбирают оптимальные обжатия для каждого прохода при соответствующей суммарной деформации, позволяющие получать относительно ровную поверхность под плакирующим слоем сплава АМг6. Например, при суммарном обжатии в 50% количество проходов достигает 15—26 и частное обжатие в последних проходах составляет не более 2%. С увеличением толщины покрытия алюминиевого сплава при одном и том же суммарном обжатии количество проходов значительно увеличивается. Средние удельные давления, возникающие при выбранных режимах, позволяют вести прокатку листов шириной до 1400 мм и более на существующем оборудовании.

Краткие обозначения:
σв— временное сопротивление разрыву (предел прочности при растяжении), МПа ε— относительная осадка при появлении первой трещины, %
σ0,05— предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2— предел текучести условный, МПаσизг— предел прочности при изгибе, МПа
δ5,δ4,δ10— относительное удлинение после разрыва, %σ-1— предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж— предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν— относительный сдвиг, % n— количество циклов нагружения
s в— предел кратковременной прочности, МПаR и ρ— удельное электросопротивление, Ом·м
ψ— относительное сужение, %E— модуль упругости нормальный, ГПа
KCU и KCV— ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T— температура, при которой получены свойства, Град
s T— предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ— коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB— твердость по БринеллюC— удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV— твердость по Виккерсу pn и r— плотность кг/м 3
HRCэ— твердость по Роквеллу, шкала Са— коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB— твердость по Роквеллу, шкала Вσ t Т— предел длительной прочности, МПа
HSD— твердость по ШоруG— модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Механические свойства алюминия

Механические свойства алюминия, как и других материалов – это свойства, которые связаны с упругой и неупругой реакцией материала на приложение к нему нагрузки, в том числе, зависимость между напряжениями и деформациями. Примерами механических свойств являются:

  • модуль упругости (при растяжении, при сжатии, при сдвиге)
  • предел прочности (при растяжении, при сжатии, при сдвиге)
  • предел текучести
  • предел усталости
  • удлинение (относительное) при разрыве
  • твердость.

Механические свойства часто ошибочно относят к физическими свойствам.

Механические свойства материалов, в том числе, алюминия и его сплавов, которые получают путем испытания материала на растяжение, например, модуль упругости при растяжении, прочность при растяжении, предел текучести при растяжении и относительное удлинение называют механическими свойствами при растяжении.

Модуль упругости

Модуль упругости, который часто называют модулем Юнга – это отношение напряжения, которое приложено к материалу, к соответствующей деформации в том интервале, когда они являются прямо пропорциональными друг к другу.

Различают три типа напряжений и соответственно три типа модулей упругости для любого материала, в том числе для алюминия:

  • модуль упругости при растяжении
  • модуль упругости при сжатии
  • модуль упругости при сдвиге (сдвиговый модуль упругости).

Таблица – Модули упругости при растяжении алюминия и других металлов [1]

Рисунок 1 – Кривые растяжения алюминия и низкоуглеродистой стали [4]

Рисунок 2 – Влияние легирующих элементов в алюминиевых сплавах на их плотность т модуль упругости [4]

Прочность при растяжении

Отношение максимальной нагрузки перед разрушением образца при испытании его на растяжение на исходную площадь поперечного сечения образца. Также применяются термины «предел прочности при растяжении» и «временное сопротивление разрыву».


Рисунок 3 – Кривые растяжения алюминия в сравнении и различными металлами и сплавами [4]

Предел текучести

Напряжение, которое необходимо для достижения заданной малой пластической деформации в алюминии или другом материале при одноосной растягивающей или сжимающей нагрузке.

Если пластическая деформация под воздействием растягивающей нагрузки задается как 0,2 %, то применяется термин «предел текучести 0,2 %» (Rp0,2).

Рисунок 4 – Типичная диаграмма напряжение-деформация
для алюминиевых сплавов

Удлинение (при разрыве)

Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.

Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.


Рисунок 5 – Влияние легирующих элементов на прочностные свойства и относительное удлинение [4]

Удлинение А

Удлинение в процентах после разрыва образца при исходном расстоянии между метками 5,65 · √ S, где S – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.

Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.

Удлинение А50мм

Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.

Сдвиговая прочность

Максимальное удельное напряжение, то есть максимальная нагрузка, разделенная на исходную площадь поперечного сечения, которую выдерживает материал при испытании на сдвиг. Сдвиговая прочность обычно составляет около 60 % от прочности при растяжении.

Сдвиговая прочность является важной характеристикой качества заклепок, в том числе, алюминиевых.


Рисунок 6 – Прочность на сжатие, прочность на сдвиг, несущая прочность и
твердость различных алюминиевых сплавов [4]

Коэффициент Пуассона

Отношение между продольным удлинением и поперечным сокращением сечения при одноосном испытании. Для алюминия и всех алюминиевых сплавов во всех состояниях коэффициент Пуассона обычно составляет 0,33 [2].

Твердость

Сопротивление металла пластическому деформации, обычно измеряемое путем отпечатка.

Твердость Бринелля (HB)

Сопротивление проникновению сферического индентора при стандартизированных условиях.

Для алюминия и алюминиевых сплавов твердость НВ приблизительно равна 0,3·Rm, где Rm – предел прочности при растяжении, выраженный в МПа [2].

Если применяется индентор из карбида вольфрама, то применяется обозначение HBW.

Твердость Викерса (HV)

Сопротивление проникновению алмазного индентора в виде квадратной пирамиды при стандартизированных условиях. Твердость HV приблизительно равна 1,10·HB [2].

Усталость

Тенденция металла разрушаться при длительных циклическом напряжении, которое значительно ниже предела прочности при растяжении.


Рисунок 7 – Различие в усталостном поведении низкоуглеродистой стали иалюминиевых сплавов [3]

Усталостная прочность

Максимальная амплитуда напряжения, которую может выдерживать изделие при заданном количестве циклов нагружения. Обычно выражается как амплитуда напряжения, которая дает 50%-ную вероятность разрушения после заданного количества циклов нагружения [2].

Усталостная выносливость

Предельное напряжение, ниже которого материал будет выдерживать заданного количество циклов напряжения [2].

Механические свойства алюминия и алюминиевых сплавов

В таблицах ниже [3] представлены типичные механические свойства алюминия и алюминиевых сплавов:

  • предел прочности при растяжении
  • предел текучести при растяжении
  • удлинение при растяжении
  • усталостная выносливость
  • твердость
  • модуль упругости

Механические свойства представлены отдельно:

  • для алюминиевых сплавов, упрочняемых нагартовкой.
  • для алюминиевых сплавов, упрочняемые термической обработкой.

Эти механические свойства – типичные. Это означает, что они годятся только для сравнительных целей, а не для инженерных расчетов. В большинстве случаев они являются средними значениями для различных размеров изделий, их форм и методов изготовления.

  • ← Previous Отчет по всемирной Выставке АЛЮМИНИЙ 2018 в Дюссельдорфе
  • Что такое алюминиевая продукция Next → />

Алюминиевые деформируемые сплавы Химсостав Механические свойства

  • Мастер
  • Cообщений: 3 776
  • Город: Юг России

ximsostav-alyuminievyx-splavov.jpg

mexsvoystva-listovoy-prokat.jpg

mexsvoystva-profili.jpg

  • 6

#2 Точмаш 23

  • Мастер
  • Cообщений: 3 776
  • Город: Юг России

Деформируемый алюминиевый сплав 6082

Al-1Si-0,9Mg-0,7Mn

Химический состав по EN 573-3:2013

Таблица 1 – Химический состав алюминиевого сплава 6082

6082-xim-sostav.jpg

  • EN 573-3: EN AW-6082 и EN AW-Al Si1MgMn
  • Teal Sheets (Алюминиевая Ассоциация): 6082
  • Unified Numbering System (UNS): А96082
  • ISO 209:2007: 6082
  • DIN 1725-1 (отменен): AlMgS1 и 3.2315
  • Входит в серию 6ххх
  • Деформируемый: методами прессования и прокатки
  • Термически упрочняемый
  • Главными легирующими элементами являются магний и кремний с марганцем в виде добавки
  • Упрочняющим компонентом является интерметаллическое соединение Mg 2 Si.
  • При номинальном химическом составе количество соединения Mg 2 Si после искусственного старения может достигать около 1,4 % с избыточным содержанием кремния 0,5 % [1]
  • Соединения марганца противодействуют рекристаллизации и, тем самым, позволяют контролировать морфологию и размер зерна в ходе термических обработок.
  • Типичными состояниями являются Т6 и Т4.
  • Состояние Т6: закалка водой после нагрева под закалку при 540 ºС и искусственное старение при 175 ºС в течение 8 часов [1]
  • Состояние Т4: естественное старение при 20 ºС в течение не менее 8 суток после нагрев под закалку как для состояния Т6 [1]
  • Не имеет аналогов в ГОСТ 4784-97
  • Место сплава 6082 среди других сплавов серии 6ххх см. на рисунке ниже

alyuminievye-splavy-6000.jpg

  • Среднепрочный алюминиевый сплав
  • Высокая коррозионная стойкость
  • Имеет самую высокую прочность среди сплавов серии 6ххх. Считается конструкционным сплавом.
  • В листовой форме применяют для механической обработки
  • Относительно новый сплав. Чаще применяется в Европе, чем в Северной Америке. За счет более высокой прочности часто применяется вместо сплава 6061.
  • Добавки большого количества марганца обеспечивают контроль зеренной структуры, что, в свою очередь, позволяет достигать более высокой прочности.
  • Труден для производства тонкостенных сложных прессованных профилей.
  • Качество поверхности прессованных изделий ниже, чем для других сплавов серии 6ххх
  • В состояниях Т6 и Т651 хорошо подвергается механической обработке резанием с образованием длинной плотной стружки [2]
  • В пассажирских автомобилях: боковые противоударные элементы рамы, рамы дверей, элементы каркаса кузова [1]
  • Высоконагруженные детали и компоненты
  • Мосты
  • Краны
  • Транспортные средства
  • Балки и фермы
  • Бадьи для добычи руды [2]
  • Пивные бочки [2]
  • Молочные бидоны [2]

Таблица 2 –
Требования к механическим свойствам
прессованных прутков, труб и профилей сплава 6082 в EN 755-2:2016

6082-prutki-2.jpg 6082-truby-1.jpg 6082-profil.jpg 6082-primechanie-2.jpg

Типичные механические свойства

6082-tipichnye-mex-svoystva.jpg

Таблица 3 – Типичные механические свойства сплава 6082 [1]

Физические свойства Плотность

Интервал температуры плавления

  • Сплав 6082 обладает хорошей свариваемостью, но имеет снижение прочности в зоне сварки.
  • При сваривании самого себя рекомендуется применять сварочную проволоку 4043 [2]
  • При приваривании сплава 6082 к сплаву 7005 необходимо применять сплав 5356 [2]

Хорошо поддается пайке мягкими и твердыми припоями

Способность к холодной формовке

Способность к механической обработке резанием

Источники:
1. Aluminium & Car: design, technology, innovation — Edimet Spa, 2005
2. Материалы компании Aalco Metals Ltd
3. Материалы компании Nedal Aluminium (Нидерланды)

  • 4

#3 Точмаш 23

  • Мастер
  • Cообщений: 3 776
  • Город: Юг России

6063, алюминиевый сплав

Al-0,7Mg-0,4Si

Химический состав по EN 573-3

  • EN573-3: EN AW-6063
  • Стандарт США ANSIH35.1: 6063
  • Teal Sheet (Алюминиевая Ассоциация): 6063
  • Unified Numbering System (UNS): А96063
  • ISO209: 6063 (до 2007 года по ISO 209-1 – AlMg0,7Si)
  • Япония: A6063
  • DIN 1725-1 (отменен): отсутствует
  • Серия – 6ххх
  • Деформируемый
  • Термически упрочняемый
  • Главные легирующие элементы – магний и кремний, без специальных добавок.
  • Упрочняющая фаза – интерметаллическое соединение Mg 2 Si. При номинальном химическом составе и полном растворении легирующих элементов количество этого упрочняющего соединения составляет около 1 %, без избыточного содержания кремния.
  • Любые другие химические элементы рассматриваются как примеси.
  • Отсутствие корректирующих добавок может создавать трудности при контроля роста зерна после нагрева под закалку и закалке [2].
  • Типичные состояния: Т5, Т6 и Т66.
  • Место сплава 6063 среди других сплавов серии 6ххх см. на рисунке ниже.

alyuminievye-splavy-6000.jpg

Сплав-аналог АД31 Сплав АД31 по ГОСТ 4784-97:

Содержание железа 0,5 % вместо 0,35 %

  • Максимальное содержание магния 0,60 % вместо 0,9 %
  • Минимальное содержание кремния 0,30 % вместо 0,20 %
  • Ограждающие строительные конструкции, такие как окна, фасадные конструкции, входы в магазины, зимние сады.
  • Трубы, поручни, спортивный инвентарь.
  • Ирригационные трубы
  • Кузова грузовых автомобилей и фургонов [1]

Типичные механические свойства

Предел прочности при растяжении, временное сопротивление разрыву при растяжении – см. таблицу 3 [1].

Удлинение пятикратного образца (А, δ 5 ) – см. таблицу 3.

Твердость по Бринеллю и Роквеллу – см. таблицу 3.

Модуль упругости при растяжении – 68300 МПа.
Модуль упругости при сдвиге – 25800 МПа.
Модуль упругости при сжатии – 69700 МПа.

2,69 г/см 3 при 20 °С

Температура ликвидус сплава 6063: 655 °С

Температура солидус сплава 6063: 615 °С

Коэффициент линейного термического расширения

Линейный: 23,4 мкм/(м·°С) в интервале от 20 до 100 °С.
Объемный: 67∙10 -6 м 3 /(м 3 ∙ °С)

Технологические характеристики Свариваемость

Хорошо сваривается дуговой сваркой в среде инертного газа, в частности, аргонно-дуговой сваркой, как неплавящимся электродом (GTAW-TIG), так и плавящимся электродом (GMWA-MIG). Обычный сварочный сплав – 4043.

175 °С в течение 8 часов.

  • 0,15-0,35 % Fe; 0,30-0,6 % Si; 0,6-0,9 % Mg
  • Прочностные свойства немного выше, чем у сплава 6063 (на 15-25 МПа для состояния Т6) без снижения качества анодирования
  • 0,15 % Fe; 0,20 % Cu
  • Прочностные свойства чуть ниже, чем у сплава 6063
  • Применяется для получения блестящей анодированной поверхности.

Источники:
1) Aluminum and Aluminum Alloys, ed. J. R. Devis
2) EN 573-3
3) EN 755-2

Алюминиевый сплав 6061

Химический состав по EN 573-2

Таблица 1 – Химический состав сплава 6061 по EN 573-3

  • ГОСТ 4784-97: АД33
  • EN 573-3: EN AW-6061 и EN AW-Al Mg0,7Si
  • Международная регистрация (Teal Sheats) – Aluminum Association: 6061
  • Unified Numbering System (UNS): А96061
  • ISO 209: 2007:6061
  • DIN 1725-1 (отменен): отсутствует
  • Деформируемый
  • Термически упрочняемый
  • Относится к сплавам с уровнем прочности от среднего до высокого.
  • Повышение прочности достигает за счет термического упрочнения.
  • Достигает прочности выше, чем у сплава 6005А.
  • Хорошая коррозионная стойкость.
  • Хорошо сваривается, но имеет пониженную прочность в зоне сварного шва.
  • Имеет среднюю усталостную прочность.
  • Хорошо поддается холодной формовке в состоянии Т4, но имеет ограниченную формуемость в состоянии Т6.
  • Не подходит для прессованных профилей со сложным поперечным сечением.
  • Полный аналог сплава АД33 по ГОСТ 4784-97
  • Место сплава 6061 среди других сплавов серии 6ххх – см. рисунок ниже.

2-%D1%81%D0%BF%D0%BB%D0%B0%D0%B2%D1%8B.j

Таблица 2 – Требования к механическим свойствам алюминиевого сплава 6061 по EN 573-3

Типичные механические свойства Прочность при растяжении

Таблица 3 – Типичные механические свойства сплава 6061 [1]

Предел текучести 0,2 %

Относительное удлинение

Удлинение А (δ 5 ) – 5-кратный образец) – см. таблицу 3.

  • Состояние О: 30 НВ;
  • Состояния Т4, Т451: 65 НВ;
  • Состояния Т6, Т651: 95 НВ.
  • при растяжении – 68900 МПа
  • при сжатии – 69700 МПа.

2,70 г/см 3 при 20 °С

Термические свойства Интервал температуры плавления

Коэффициент термического расширения

Линейный: 23,6 мкм/(м·°С) в интервале от 20 до 100 °С.

Технологические свойства Свариваемость

Хорошо сваривается дуговой сваркой в среде инертного газа, в частности, аргонно-дуговой сваркой, как неплавящимся электродом (GTAW-TIG), так и плавящимся электродом (GMWA-MIG). Обычный сварочный сплав – 4043.

  • Катаные и тянутые изделия: 160 °С в течение 18 часов [1]
  • Прессованные или кованные изделия: 175 °С в течение 8 часов [1]
  • 0,2-0,35 % Mg
  • Прочнее сплава 6061 в состоянии Т6 на 15-20 МПа.

Для понимания особенностей закалки сплава 6061 полезно сравнить ее условия с закалкой сплава 6060. Алюминиевый сплав 6060 – это аналог сплава АД31 при минимальном содержании в нем магния и кремния. На рисунке схематически показаны различия необходимых скоростей охлаждения этих сплавов для обеспечения закалки, то есть создания твердого раствора магния и кремния за счет предотвращения выпадения частиц Mg 2 Si.

Механические характеристики алюминиевых сплавов

Проведен обзор механических свойств существующих низконаполненных алюмоматричных композиционных материалов с матрицами из алюминиевых сплавов серий 6ХХХ (6061, 6063, 6092), 2ХХХ (2024, 2009), 7ХХХ (7075, 7050) и разным процентным содержанием упрочняющих частиц карбида кремния. Показана зависимость изменения свойств при изменении процентного содержания упрочняющих частиц у алюмоматричных композиционных материалов с разными матричными сплавами. Показано, что максимальными механическими характеристиками обладают алюмоматричные композиционные материалы с матричными алюминиевыми сплавами серии 7ХХХ. Рассмотрены химические и фазовые составы матричных сплавов. Приведены детали и конструкции, которые изготавливают из алюмоматричных композиционных материалов.

Введение

Прогресс науки и техники во многом зависит от успехов в области создания новых материалов. Композиционные материалы (КМ) по праву считаются материалами будущего, так как в большинстве случаев только они могут удовлетворять требованиям при создании новой техники, для которой актуальным вопросом является уменьшение массы изделия, а также характерно ужесточение условий эксплуатации: повышение эксплуатационных нагрузок, скоростей, температур, агрессивности сред и т. д. [1–4].

По типу матричного материала композиты делятся на полимерные (ПКМ), металлические (МКМ) и керамические (ККМ), а по геометрической форме армирующего элемента – на дисперсноармированные, волокнистые и слоистые. Металлические КМ имеют ряд важных преимуществ: высокие жесткость, прочность, трещиностойкость, износостойкость, широкий температурный интервал работы. Дисперсноармированные КМ выгодно отличаются от волокнистых и слоистых изотропией своих свойств, универсальностью и сравнительной простотой технологии изготовления, в связи с чем дисперсноармированные МКМ нашли широкое применение в авиационно-космической отрасли, а среди них на первом месте по объему применения находятся алюмоматричные композиционные материалы (АМКМ), которые используются в качестве конструкционных материалов [5, 6].

Алюмоматричные композиционные материалы с упрочняющими частицами SiC благодаря своим свойствам нашли широкое применение в авиастроении. Из них изготавливают элементы обшивки самолета, лопатки ГТД, поршни, тормозные диски и т. д. [7–9].

В настоящее время существует множество исследований механических свойств низконаполненных АМКМ с определенными матричными сплавами и различным содержанием упрочняющих частиц карбида кремния. Механические свойства во многом зависят от матричного сплава и от процентного содержания упрочняющих частиц [10–12]. Целью данной статьи является обзор существующих АМКМ и описание механических характеристик АМКМ с разными матричными сплавами, в частности сплавами серий 6ХХХ, 2ХХХ, 7ХХХ.

Работа выполнена в рамках реализации комплексного научного направления 12.1. «Металлические композиционные материалы (МКМ), армированные частицами и волокнами тугоплавких соединений («Стратегические направления развития материалов и технологий их переработки на период до 2030 года»)» [13].

Алюмоматричные композиционные материалы, армированные частицами SiC,

на основе сплавов серии 6ХХХ

Сплавы серии 6ХХХ широко применяются в настоящее время. Интерес к ним обусловлен комплексом таких свойств, как хорошая коррозионная стойкость, технологичность и высокая пластичность. Данные сплавы относятся к сплавам системы Al–Mg–Si, которые имеют высокую пластичность в отожженном, свежезакаленном и естественносостаренном состоянии, что позволяет подвергать их вытяжке, штамповке и другим операциям со значительными степенями деформации [6, 10]. Сплавы серии 6ХХХ являются низколегированными, по сравнению со сплавами серий 2ХХХ и 7ХХХ. Фазовый состав данных сплавов представлен α-фазой и основной упрочняющей фазой Мg2Si. Помимо фазы Мg2Si, в сплавах могут присутствовать интерметаллидные соединения типа AlSiFe, AlCrFeSi, AlFeMnSi и др. Основными легирующими элементами являются Si и Mg. При содержании магния ˃0,8% (по массе) повышение концентрации кремния приводит к снижению временно́го сопротивления разрушению, поэтому кремний добавляют в небольшом количестве. Коррозионная стойкость сплавов системы Al–Mg–Si резко снижается при увеличении содержания фазы Мg2Si и кремния. Поэтому при выборе матричных сплавов для АМКМ, к которым предъявляются повышенные требования по коррозионной стойкости, сплавы с избытком магния следует предпочесть сплавам с повышенным содержанием кремния.

Алюминиевый деформируемый сплав марки 6061 наиболее часто используется для упрочнения частицами SiC благодаря высокой технологичности. Сплав 6061 имеет следующие механические свойства: предел прочности 215 МПа, предел текучести 150 МПа, удлинение 13%. Данный сплав используется для изготовления деталей средней прочности с высокой коррозионной стойкостью, работающих во влажной атмосфере и морской воде [6]. Сплав 6061 имеет следующий химический состав, % (по массе):

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector