Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Максимальная кинетическая энергия груза на пружине

Максимальная кинетическая энергия груза на пружине

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

Запуск колебательного движения тела осуществляется с помощью кнопки Старт . Остановить процесс в любой момент времени позволяет кнопка Стоп .

Графически показано соотношение между потенциальной и кинетической энергиями при колебаниях в любой момент времени. Обратите внимание, что в отсутствие затухания полная энергия колебательной системы остается неизменной, потенциальная энергия достигает максимума при максимальном отклонении тела от положения равновесия, а кинетическая энергия принимает максимальное значение при прохождении тела через положение равновесия.

Задание 7. Верхний конец пружины идеального пружинного маятника неподвижно закреплён, как показано на рисунке. Масса груза маятника равна m, жёсткость пружины равна k. Груз оттянули вниз на расстояние x от положения равновесия и отпустили с начальной скоростью, равной нулю. Формулы А и Б позволяют рассчитать значения физических величин, характеризующих колебания маятника.

Установите соответствие между формулами и физическими величинами, значение которых можно рассчитать по этим формулам.

Максимальная кинетическая энергия груза на пружине

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Максимальная кинетическая энергия груза на пружине

1) амплитуда колебаний скорости

2) циклическая частота колебаний

3) максимальная кинетическая энергия груза

4) период колебаний

А) Имеем пружинный маятник массой m и жесткостью пружины k, тогда период свободных колебаний этого маятника определяется по формуле , а частота как . Циклическая частота , следовательно, для буквы А имеем ответ под номером 2.

Б) Для пружинного маятника известны формулы кинетической энергии и потенциальной энергии . Учитывая, что начальная скорость тела равна 0, то вся потенциальная энергия переходит в кинетическую, то есть . Ответ под номером 3.

Пру­жин­ный ма­ят­ник, со­сто­я­щий из груза и лёгкой пру­жи­ны, со­вер­ша­ет ко­ле­ба­ния. В мо­мент, когда груз на­хо­дит­ся в край­нем по­ло­же­нии, его не­мно­го под­тал­ки­ва­ют вдоль оси пру­жи­ны в на­прав­ле­нии от по­ло­же­ния

рав­но­ве­сия. Как в ре­зуль­та­те этого из­ме­ня­ют­ся мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­ка и ча­сто­та его ко­ле­ба­ний?

Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

3) не из­ме­ня­ет­ся

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

Мак­си­маль­ная ки­не­ти­че­ская энер­гия груза ма­ят­ни­каЧа­сто­та ко­ле­ба­ний ма­ят­ни­ка

Груз под­толк­ну­ли от по­ло­же­ния рав­но­ве­сия, от­ку­да сле­ду­ет, что ам­пли­ту­да ко­ле­ба­ний груза уве­ли­чит­ся. При этом уве­ли­чит­ся также и мак­си­маль­ная по­тен­ци­аль­ная энер­гия пру­жи­ны. По за­ко­ну со­хра­не­ния энер­гии, это при­ве­дет к уве­ли­че­нию мак­си­маль­ной ки­не­ти­че­ской энер­гии груза ма­ят­ни­ка.

Пе­ри­од и ча­сто­та пру­жин­но­го ма­ят­ни­ка за­ви­сят толь­ко от массы груза и жест­ко­сти пру­жи­ны. Таким об­ра­зом, при уве­ли­че­нии ам­пли­ту­ды ко­ле­ба­ний груза, ча­сто­та ко­ле­ба­ний ма­ят­ни­ка не из­ме­нит­ся.

Закон сохранения механической энергии

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Энергия: что это такое

Если мы погуглим определение слова «Энергия», то скорее всего найдем что-то про формы взаимодействия материи. Это верно, но совершенно непонятно.

Поэтому давайте условимся здесь и сейчас, что энергия — это запас, который пойдет на совершение работы.

Энергия бывает разных видов: механическая, электрическая, внутренняя, гравитационная и так далее. Измеряется она в Джоулях (Дж) и чаще всего обозначается буквой E.

Механическая энергия

Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Она представляет собой совокупность кинетической и потенциальной энергии. Кинетическая энергия — это энергия действия. Потенциальная — ожидания действия.

Представьте, что вы взяли в руки канцелярскую резинку, растянули ее и отпустили. Из растянутого положения резинка просто «полетит», как только вы ей позволите это сделать. В этом процессе в момент натяжения резинка обладает потенциальной энергией, а в момент полета — кинетической.

Еще один примерчик: лыжник скатывается с горы. В самом начале — на вершине — у него максимальная потенциальная энергия, потому что он в режиме ожидания действия (ждущий режим 😂), а внизу горы он уже явно двигается, а не ждет, когда с ним это случится — получается, внизу горы кинетическая энергия.

Кинетическая энергия

Еще разок: кинетическая энергия — это энергия действия. Величина, которая очевиднее всего характеризует действие — это скорость. Соответственно, в формуле кинетической энергии точно должна присутствовать скорость.

Кинетическая энергия

Ек = (m*v^2)/2

Ек — кинетическая энергия [Дж]

m — масса тела [кг]

Чем быстрее движется тело, тем больше его кинетическая энергия. И наоборот — чем медленнее, тем меньше кинетическая энергия.

Задачка раз

Определить кинетическую энергию собаченьки массой 10 килограмм, если она бежала за мячом с постоянной скоростью 2 м/с.

Решение:

Формула кинетической энергии Ек = (m*v^2)/2

Ек = (10*2^2)/2 = 20 Дж

Ответ: кинетическая энергия пёсы равна 20 Дж.

Задачка два

Найти скорость бегущего по опушке гнома, если его масса равна 20 килограммам, а его кинетическая энергия — 40 Дж

Решение:

Формула кинетической энергии Ек = (m*v^2)/2

формула

формула рис1

Ответ: гном бежал со скоростью 2 м/с.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Потенциальная энергия

В отличие от кинетической энергии, потенциальная чаще всего тем меньше, чем скорость больше. Потенциальная энергия — это энергия ожидания действия.

Например, потенциальная энергия у сжатой пружины будет очень велика, потому что такая конструкция может привести к действию, а следовательно — к увеличению кинетической энергии. То же самое происходит, если тело поднять на высоту. Чем выше мы поднимаем тело, тем больше его потенциальная энергия.

Потенциальная энергия деформированной пружины

Еп — потенциальная энергия [Дж]

k — жесткость [Н/м]

x — удлинение пружины [м]

Потенциальная энергия

Еп = mgh

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с^2]

На планете Земля g ≃ 9,8 м/с^2

Задачка раз

Найти потенциальную энергию рака массой 0,1 кг, который свистит на горе высотой 2500 метров. Ускорение свободного падения считать равным 9,8 м/с^2.

Решение:

Формула потенциальной энергии Еп = mgh

Eп = 0,1 * 9,8 * 2500=2450 Дж

Ответ: потенциальная энергия рака, свистящего на горе, равна 2450 Дж.

Читайте так же:
Чем обжимают интернет кабель

Задачка два

Найти высоту горки, с которой собирается скатиться лыжник массой 65 килограмм, если его потенциальная энергия равна 637 кДж. Ускорение свободного падения считать равным 9,8 м/с^2.

Решение:

Формула потенциальной энергии Еп = mgh

Переведем 637 кДж в Джоули.

637 кДж = 637000 Дж

h = 637 000/(65 * 9,8) = 1000 м

Ответ: высота горы равна 1000 метров.

Задачка три

Два шара разной массы подняты на разную высоту относительно поверхности стола (см. рисунок). Сравните значения потенциальной энергии шаров E1 и E2. Считать, что потенциальная энергия отсчитывается от уровня крышки стола.

Задача для самопроверки

Решение:

Потенциальная энергия вычисляется по формуле: E = mgh

По условию задачи

Таким образом, получим, что

E1 = m*g*2h = 2 mgh,

Ответ: E1 = E2.

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн.мех. = Еп + Eк = const

Еполн.мех. — полная механическая энергия системы [Дж]

Еп — потенциальная энергия [Дж]

Ек — кинетическая энергия [Дж]

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Еп1 + Ек1 = Еп2 + Ек2

Разделим на массу левую и правую часть

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v0, поднялось на максимальную высоту h0. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh0.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh0.

Ответ: Емех = mgh0.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

m = 100 г = 0,1 кг

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

Е = Ек0 = (m*v^2)/2 = (0,1*6^2)/2 = 1,8 Дж

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

mgh = E — (m*v^2)/2 = 1,8 — (0,1 * 2^2)/2 = 1,6 Дж

h = E/mg = 1,6/0,1*10 = 1,6 м

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Переход механической энергии во внутреннюю

Внутренняя энергия — это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия. То есть та энергия, которая запасена у тела за счет его собственных параметров.

Часто механическая энергия переходит во внутреннюю. Происходит этот процесс путем совершения механической работы над телом. Например, если сгибать и разгибать проволоку — она будет нагреваться.

Или если кинуть мяч в стену, часть энергии при ударе перейдет во внутреннюю.

Задачка

Какая часть начальной кинетической энергии мяча при ударе о стену перейдет во внутреннюю, если полная механическая энергия вначале в два раза больше, чем в конце?

Решение:

В самом начале у мяча есть только кинетическая энергия, то есть Емех = Ек.

В конце механическая энергия равна половине начальной, то есть Емех/2 = Ек/2

Часть энергии уходит во внутреннюю, значит Еполн = Емех/2 + Евнутр

Емех = Емех/2 + Евнутр

Ответ: во внутреннюю перейдет половина начальной кинетической энергии

Закон сохранения энергии в тепловых процессах

Чтобы закон сохранения энергии для тепловых процессов был сформулирован, было сделано два важных шага. Сначала французский математик и физик Жан Батист Фурье установил один из основных законов теплопроводности. А потом Сади Карно определил, что тепловую энергию можно превратить в механическую.

Вот что сформулировал Фурье:

При переходе теплоты от более горячего тела к более холодному температуры тел постепенно выравниваются и становятся едиными для обоих тел — наступает состояние термодинамического равновесия.

Таким образом, первым важным открытием было открытие того факта, что все протекающие без участия внешних сил тепловые процессы необратимы.

Дальше Карно установил, что тепловую энергию, которой обладает на­гретое тело, непосредственно невозможно превратить в механиче­скую энергию для производства работы. Это можно сделать, только если часть тепловой энергии тела с большей температурой передать другому телу с меньшей температурой и, следовательно, нагреть его до более высокой температуры.

Закон сохранения энергии в тепловых процессах

При теплообмене двух или нескольких тел абсолютное количество теплоты, которое отдано более нагретым телом, равно количеству теплоты, которое получено менее нагретым телом.

Математически его можно описать так:

Уравнение теплового баланса

Q отд = Q пол

Qотд — отданное системой количество теплоты [Дж]

Q пол — полученное системой количество теплоты [Дж]

Данное равенство называется уравнением теплового баланса. В реальных опытах обычно получается, что отданное более нагретым телом количество теплоты больше количества теплоты, полученного менее нагретым телом:

Это объясняется тем, что некоторое количество теплоты при теплообмене передаётся окружающему воздуху, а ещё часть — сосуду, в котором происходит теплообмен.

Задачка раз

Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С, если учесть, что на нагревание пошло 20% затраченной энергии.

Удельная теплота сгорания спирта 2,9·10^7Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг·°С).

Решение:

При нагревании тело получает количество теплоты

где c — удельная теплоемкость вещества

Читайте так же:
Духовые шкафы электрические встраиваемые отзывы покупателей

При сгорании тела выделяется энергия

где q — удельная теплота сгорания топлива

По условию задачи нам известно, что на нагревание пошло 20% затраченной энергии.

cmΔt =0,2 * qmсгор

mсгор = cmΔt / 0,2 q

решение задачи

Ответ: масса сгоревшего топливаа равна 33,6 г.

Задачка два

Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь. Удельная теплоемкость льда равна 2100 Дж/кг*℃, удельная теплота плавления льда равна 3,3*10^5 Дж/кг.

Решение:

Для нагревания льда до температуры плавления необходимо:

Qнагрев = 2100 * 0,5 * (10-0) = 10500 Дж

Для превращения льда в воду:

Qпл = 3,3 * 10^5 * 0,5 = 165000 Дж

Q = Qнагрев + Qпл = 10500 + 165000 = 175500 Дж = 175,5 кДж

Ответ: чтобы превратить 0,5 кг льда в воду при заданных условиях необходимо 175,5 кДж тепла.

Максимальная кинетическая энергия груза формула

Перейдем теперь к обсуждению закона сохранения механической энергии. Вернемся к теореме о кинетической энергии, согласно которой изменение кинетической энергии системы частиц при переходе из состояния 1 в состояние 2 равно сумме работ всех действующих сил — внешних и внутренних, как потенциальных, так и непотенциальных. Поделив все действующие силы на потенциальные и непотенциальные, можем написать

Работа потенциальных сил равна разности значений потенциальной энергии системы в начальном и конечном состояниях:

Подставляя выражение (2) в теорему (1) о кинетической энергии системы частиц и перегруппировывая слагаемые, получаем

Механическая энергия. Сумма кинетической и потенциальной энергий системы называется механической энергией (или полной механической энергией):

Теперь равенство (3) перепишется в виде

Равенство (5) означает, что изменение механической энергии системы равно работе всех непотенциальных сил (как внешних,

так и внутренних). Это и есть закон изменения механической энергии.

Если непотенциальных сил нет или если их работа равна нулю, механическая энергия системы сохраняется. Обладающие таким свойством физические системы называются консервативными. В таких системах возможны лишь взаимные превращения потенциальной энергии в кинетическую и обратно, но полный запас механической энергии системы измениться не может.

Потенциальная энергия системы в общем случае включает в себя потенциальную энергию взаимодействия частиц системы и потенциальную энергию этих частиц во внешнем поле (если оно есть). В некоторых случаях работу внешних потенциальных сил бывает удобно рассматривать явно, а не выражать через изменение потенциальной энергии. В этом случае нужно считать, что потенциальная энергия системы состоит только из энергии взаимодействия составляющих ее частиц. Закон изменения энергии при этом формулируется так: изменение механической энергии системы равно работе всех внешних сил и непотенциальных внутренних сил.

Задачи

1. Максимальная высота подъема. Телу на поверхности Земли сообщают скорость направленную вертикально вверх. На какую наибольшую высоту над поверхностью Земли оно поднимется?

Решение. Эта задача не представляет никаких трудностей, если начальная скорость мала настолько, что максимальная высота подъема много меньше радиуса Земли. В таком случае действующая на тело сила тяжести постоянна на всем пути, движение происходит с постоянным ускорением и максимальная высота подъема определяется известной формулой кинематики Эту формулу можно сразу получить и с помощью закона сохранения энергии. Так как единственная действующая на тело сила (сила тяжести) потенциальна, то полная механическая энергия во все моменты движения одинакова. В начальный момент это только кинетическая энергия в точке наибольшего подъема, где скорость обращается в нуль, — это только потенциальная энергия Приравнивая эти значения, снова получаем

Если же начальная скорость велика настолько, что не учитывать зависимости силы тяжести от высоты уже нельзя, то решение задачи непосредственно с помощью законов Ньютона наталкивается на серьезные математические трудности. Однако использование закона сохранения энергии позволяет сразу найти интересующую нас максимальную высоту подъема. Все приведенные выше рассуждения справедливы и теперь, только для потенциальной энергии тела в поле тяжести Земли нужно вместо приближенной формулы взять точную формулу (6) предыдущего параграфа:

учитывая, разумеется, что теперь потенциальную энергию тела на поверхности Земли следует считать равной

Полагая и приравнивая значения механической энергии тела на поверхности Земли и в точке максимального подъема, получаем

Решая это уравнение относительно , находим

Если то вторым слагаемым в знаменателе правой части (7) можно пренебречь и мы сразу приходим к прежнему результату: Можно получить поправку к этому ответу, обусловленную зависимостью силы тяжести от высоты. Используя приближенную формулу , из (7) при получаем

Из формулы (7) видно, что высота подъема неограниченно возрастает, если начальная скорость приближается к значению Такая скорость называется скоростью освобождения или второй космической скоростью Подставляя значения км, находим Если такую скорость сообщить находящемуся вблизи земной поверхности телу, оно навсегда покинет Землю.

2. Груз на стержне. Груз, подвешенный на легком стержне длины который может свободно поворачиваться вокруг горизонтальной оси, отвели из равновесного положения так, что стержень образует с вертикалью угол 9 (рис. 119). Какую максимальную скорость приобретет груз, если его отпустить?

Рис. 119. Силы, действующие на груз, подвешенный на стержне

Решение. В рассматриваемой механической системе на груз при свободном движении действуют только две силы: сила тяжести и сила реакции стержня

Тем не менее динамическое решение этой задачи затруднительно, ибо сила реакции стержня заранее не задана и изменяется в процессе движения. Однако на поставленный в условии задачи вопрос легко ответить, используя закон сохранения механической энергии.

Действительно, данная механическая система консервативна, так как сила тяжести потенциальна, а сила реакции стержня при движении груза работы не совершает, ибо в любой момент направлена перпендикулярно скорости. Поэтому полная механическая энергия системы, включающая кинетическую энергию груза и его потенциальную энергию в поле тяжести, сохраняется. Разумеется, это справедливо, когда можно пренебречь трением.

Очевидно, что кинетическая энергия и, следовательно, скорость груза будут максимальны в той точке траектории, где потенциальная энергия минимальна, т. е. при прохождении положения равновесия. Будем отсчитывать потенциальную энергию груза от этой самой низкой точки. Тогда потенциальная энергия груза при отклонении стержня на угол от вертикали равна где как видно из рис. 119, определяется выражением

Приравнивая значения потенциальной энергии неподвижного отклоненного груза и его кинетической энергии при прохождении положения равновесия, имеем

Из выражения (10) видно, что скорость груза в нижней точке будет по модулю такой же, как и при свободном падении с высоты Это значит, что роль силы реакции стержня свелась только к изменению направления скорости. Такие силы называют силами реакции идеальных связей.

Читайте так же:
Камни для точения ножей

По своей физической природе сила реакции стержня — это, конечно, упругая сила. Используемая здесь физическая модель, т. е. идеализация свойств стержня, заключается в пренебрежении его возможной деформацией. Другими словами, жесткость стержня считается настолько большой, что при действующих здесь силах деформация практически отсутствует: можно не учитывать изменения длины стержня при подсчете потенциальной энергии груза в поле тяжести и пренебречь потенциальной энергией упругой деформации самого стержня.

Отметим, что использование закона сохранения энергии дает возможность легко получить ответы на некоторые интересующие нас вопросы, но не дает исчерпывающей информации о всем движении. Например, мы не можем с помощью закона сохранения энергии найти зависимость угла отклонения стержня от времени.

3. Цепочка в трубке. В причудливо изогну той жесткой трубке с гладкими внутренними стенками находится цепочка длины которая может скользить сквозь трубку, не изменяя своей длины (рис. 120). В начальный момент цепочку удерживают, причем ее верхний конец находится на высоте над нижним. Каким будет ускорение цепочки сразу после того, как ее отпустить?

Рис. 120. Цепочка внутри изогнутой гладкой трубки

Решение. Динамическое решение такой задачи требует задания определенной конфигурации трубки. При пренебрежении трением силы реакции трубки можно считать направленными перпендикулярно поверхности в любой ее точке. Другими словами, такая связь является идеальной.

а рассматриваемая механическая система — консервативной. Поэтому можно воспользоваться законом сохранения механической энергии.

Допустим, что отпущенная цепочка сместилась вдоль трубки на малое расстояние Поскольку скорости всех звеньев цепочки одинаковы, то цепочка приобретет при этом кинетическую энергию

где — масса цепочки в расчете на единицу ее длины (линейная плотность). Эта энергия появилась за счет того, что на такую же величину уменьшилась потенциальная энергия цепочки в поле тяжести. Легко сообразить, что потенциальная энергия цепочки уменьшится на

так как это уменьшение связано с тем, что теперь у верхнего конца цепочки на высоте нет кусочка длины опустившегося вниз. Приравнивая правые части выражений (11) и (12), получаем

Если участок выбран настолько малым, что на его протяжении ускорение а можно считать постоянным, то справедлива формула кинематики равноускоренного движения Подставляя это значение в левую часть (13), находим ускорение а цепочки в начальный момент:

Заметим, что полученный результат справедлив не только в начальный момент, когда цепочка начинает скользить по трубке. Та же формула (14) дает значение ускорения цепочки для произвольного момента времени, выражая ускорение через разность высот ее верхнего и нижнего концов. Действительно, если при смещении цепочки на ее скорость изменяется от до то закон сохранения энергии записывается в виде

Отсюда, учитывая кинематическое соотношение снова получаем выражение (14): ускорение не зависит от скорости цепочки и определяется только разностью высот ее концов. Когда начало и конец цепочки находятся на одном уровне, ее ускорение равно нулю, как бы причудливо ни была изогнута трубка.

В частном случае прямолинейной трубки формула (14) описывает поведение тела на наклонной плоскости в отсутствие трения: ускорение тела постоянно и равно , так как отношение равно синусу угла а наклона плоскости к горизонту.

4. Наклонная плоскость. Груз массы медленно втаскивают по наклонной плоскости на высоту за трос, параллельный наклонной плоскости (рис. 121). Сила натяжения троса совершает при этом некоторую работу А. Какую скорость наберет груз в конце наклонной плоскости, если отпустить трос?

Решение. Очевидно, что заданная в условии задачи работа А не может быть меньше В противном случае оказался бы нарушенным закон сохранения энергии.

Если то система консервативна, трение в ней отсутствует и, спустившись до конца наклонной плоскости, груз наберет такую же по модулю скорость, как и при свободном падении с высоты Если то механическая система не является консервативной и, применяя к ней закон изменения механической энергии, необходимо учитывать работу сил трения.

Рис. 121. Груз на наклонной плоскости

Эту задачу можно решить непосредственно с помощью законов динамики, так как все действующие силы здесь постоянны. Однако использование энергетических представлений облегчает получение ответа, делая выкладки более компактными. Запишем сначала закон изменения энергии для подъема груза на высоту Так как по условию задачи скорость груза мала, то его кинетической энергией можно пренебречь. Поэтому

Работа силы трения здесь отрицательна, так как эта сила направлена противоположно перемещению.

Рассмотрим теперь спуск груза. На высоте груз обладал потенциальной энергией а в конце, у основания наклонной плоскости, он обладает только кинетической энергией Изменение полной механической энергии груза равно работе сил трения. Эта работа будет такой же, как и при подъеме, ибо здесь такая же по модулю сила трения направлена противоположно перемещению. Поэтому

Подставляя в из (15), получаем

Обратим внимание на то, что соотношение (17) имеет смысл только при выполнении условия Поэтому приведенный ответ (17) справедлив, когда

Хотя при выражение (17) формально сохраняет смысл, оно дает конечную скорость что невозможно. Подумайте над тем, какой физической картине соответствует случай для которого ответ (17) теряет смысл.

4. Механические колебания Основные формулы

,

где – смещение точки от положения равновесия, А – амплитуда колебаний, – круговая (циклическая частота),t – время, – начальная фаза колебаний.

,

где – частота колебаний,– период колебаний.

Скорость и ускорение при гармонических колебаниях:

,

.

,

,

где – коэффициент упругой (квазиупругой) силы,– масса материальной точки.

Максимальная возвращающая сила

Кинетическая энергия колеблющейся точки

Потенциальная энергия колеблющейся точки

Полная энергия при гармонических колебаниях:

.

–математический маятник (– длина нити,— ускорение свободного падения),

–пружинный маятник (– масса тела,– жесткость пружины),

–физический маятник ( – момент инерции тела относительно оси, проходящей через точку подвеса, – масса тела, – расстояние от точки подвеса до центра масс).

Уравнение затухающих колебаний:

,

где – амплитуда колебаний в начальный момент времени, — амплитуда затухающих колебаний,-коэффициент затухания (— коэффициент сопротивления,-масса точки),— частота затухающих колебаний.

Логарифмический декремент затухания

.

Амплитуда результирующего колебания, полученного при сложении двух колебаний одинаковой частоты и одного направления:

,

где и— амплитуды слагаемых колебаний,— разность фаз слагаемых колебаний.

Читайте так же:
Чем просверлить искусственный камень

Начальная фаза результирующего колебания определяется из формулы:

.

Уравнение траектории точки, участвующей в двух взаимно­ перпенди­кулярных колебаниях с одинаковыми частотами:

,

где — разность фаз складываемых колебаний.

Задания

4.1. Уравнение движения точки дано в виде м. Найти период, амплитуду, начальную фазу, циклическую частоту и частоту колебаний. [1с; 0,1м; ; 2; 1 Гц]

4.2 Написать уравнение гармонических колебаний точки с амплитудой 0,1 м, если начальная фаза равна , а период колебаний 2 с.

4.3 Написать уравнение гармонических колебаний точки с амплитудой 5 см, если за 2 минуты совершается 120 колебаний, а начальная фаза равна 60º.

4.4 Уравнение движения точки дано в виде м. Найти максимальные значения скорости и ускорения.[]

4.5 Точка совершает гармонические колебания с амплитудой 10 см и периодом 5 с. Определить максимальную скорость и максимальное ускорение. [12,6 см/с; 15,8 см/с 2 ]

4.6. Определите максимальные значения скорости и ускорения точки, совершающей гармонические колебания с амплитудой 2 см и периодом 2 с. [0,0628 м/c; 0,197 м/]

4.7. Точка совершает гармонические колебания с периодом 8 с и начальной фазой, равной нулю. Определите, за какое время точка сместится от положения равновесия на половину амплитуды. [4/3 c]

4.8. Точка совершает гармонические колебания с периодом 12 с. Определите, за какое время скорость точки увеличится от нуля до половины максимального значения. [1 c]

4.9. Точка совершает гармонические колебания с периодом 12 c. Определите, за какое время ускорение точки увеличится от нуля до половины максимального значения. [1 c]

4.10. Уравнение движения точки дано в виде . Определите моменты времени, при которых достигается максимальная скорость точки. [2с, 6с, 10с …]

4.11. Уравнение движения точки дано в виде . Определите моменты времени, при которых достигается максимальное ускорение точки. [0c, 2c, 4c …]

4.12. Материальная точка совершает гармонические колебания согласно уравнению м. Определите максимальное значение модуля возвращающей силы и полную энергию точки, если её масса 0,1 кг. [0,59 Н; 0,047 Дж]

4.13. Материальная точка массой 50 г совершает гармонические колебания согласно уравнению м. Определите возвращающую силу для момента времени 2 с. [0,11 Н]

4.14. Определите отношение кинетической энергии точки, совершающей гармонические колебания, к её потенциальной энергии для моментов времени: a) t=T/12; б) t=T/8; в) t=T/6, где Т – период колебаний. Начальная фаза равна нулю. [3; 1; 1/3]

4.15. Определите отношение кинетической энергии точки, совершающей гармонические колебания, к её потенциальной энергии для моментов времени, при которых смещение от положения равновесия составляет: а) х=А/4; б) х=А/2; в) х=А, где А – амплитуда колебаний. [15; 3; 0]

4.16. Как изменится частота колебаний груза, висящего на двух одинаковых пружинах, если от их последовательного соединения перейти к параллельному? [увеличится в 2 раза]

4.17. Груз, подвешенный к пружине, колеблется по вертикали с амплитудой 8 см. Определите жёсткость пружины, если известно, что максимальная кинетическая энергия груза равна 0,8 Дж. [k=250 Н/м]

4.18. Если увеличить массу груза, подвешенного на пружине, на 600 г, то период колебаний возрастёт в 2 раза. Определите массу первоначально подвешенного груза. [200 г]

4.19. Два математических маятника, длины которых отличаются на 16 см, совершают за одно и то же время один 10 колебаний, другой 6 колебаний. Определите длины маятников. [9см; 25см]

4.20. Математический маятник длиной 1 м подвешен к потолку кабины, которая начинает опускаться вертикально вниз с ускорением . Найдите период колебаний этого маятника. [2,32 с]

4.21. На какую высоту надо поднять математический маятник, чтобы период его колебаний увеличился в 2 раза? Радиус Земли 6400 км. []

4.22. Маятник, состоящий из невесомой нити длиной 1 м и свинцового шарика радиусом 0,02 м, совершает гармонические колебания с амплитудой 0,06 м. Определите: а) модуль максимального значения возвращающей силы; б) модуль максимальной скорости. Плотность свинца 11,3 . 10 3 кг/м 3 .

4.23. Тонкий обруч радиусом 0,5 м подвешен на вбитый в стенку гвоздь и совершает гармонические колебания в плоскости, параллельной стене. Определите частоту колебаний обруча. [0,5 Гц]

4.24. Однородный диск радиусом 20 см колеблется около горизонтальной оси, проходящей на расстоянии 15 см от центра диска. Определите период колебаний диска относительно этой оси. [1,07 с]

4.25. Диск радиусом подвешен так, что может совершать гармонические колебания относительно образующей диска. Определите период и частоту колебаний диска.

4.26. Тонкий стержень длиной 60 см совершает колебания относительно оси, отстоящей на расстоянии 15 см от его середины. Определите период колебаний стержня. [1,19 с]

4.27. Определите амплитуду и начальную фазу гармонического колебания, полученного от сложения одинаково направленных колебаний, заданных уравнениями: и

[;]

4.28.Найдите уравнение результирующего колебания, полученного от сложения одинаково направленных колебаний, заданных уравнениями:,. []

4.29. Точка участвует в двух колебаниях одинаковой частоты одного направления и с одинаковыми начальными фазами. Амплитуды колебаний соответственно равны 3 см и 4 см. Определите амплитуду результирующего колебания.[7 см;]

4.30. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, которые происходят по законам: и . Найдите траекторию движения точки. [окружность радиусом 2]

4.31. Точка участвует в двух колебаниях одинаковой частоты и с одинаковыми начальными фазами, совершаемых во взаимно перпендикулярных направлениях. Амплитуды колебаний соответственно равны 3 см и 4 см. Определите амплитуду результирующего колебания. [5 см]

4.32. Запишите уравнение результирующего колебания точки, полученного от сложения двух взаимно перпендикулярных колебаний одинаковой частоты , с одинаковыми начальными фазами, равнымии с амплитудами:и. []

4.33. Уравнение затухающих колебаний точки дано в виде м. Определите скорость точки в моменты времени, равные. [7,85 м/с; 2,9 м/с; 1,1 м/с]

4.34. Логарифмический декремент затухания математического маятника равен 0,2. Во сколько раз уменьшится амплитуда за одно полное колебание? [в 1,22 раз]

4.35. Начальная амплитуда затухающих колебаний точки равна 3 см. По истечении 10 с от начала колебаний амплитуда стала равной 1 см. Через какое время амплитуда станет равной 0,3 см? [21 c]

4.36. Амплитуда затухающих колебаний маятника за 2 минуты уменьшилась в 2 раза. Определите коэффициент затухания. [5,78 . 10 -3 1/с]

4.37. Амплитуда затухающих колебаний маятника за 1 минуту уменьшилась в 3 раза. Во сколько раз она уменьшится за 4 минуты? [в 81 раз]

Потенциальная энергия

В предыдущем параграфе мы говорили о работе, которую может совершить тело за счет уменьшения своей скорости, а теперь нас будет интересовать работа, которую может совершить тело или система тел вследствие изменения положения тел.

Читайте так же:
Кузнечное дело с чего начать

Работа поднятого груза. Когда подвешенный на тросе груз равномерно движется вниз, он действует на трос силой, направленной тоже вниз (рис. 30.1).

Эта сила обусловлена силой тяжести: она совершает работу, действуя на груз, а груз совершает работу, действуя на трос.

Итак, благодаря действию силы тяжести груз может совершить работу при движении вниз.

Работа пружины. Когда деформация пружины уменьшается, пружина действует на тело силой упругости, направленной так же, как перемещение тела (рис. 30.2). При этом пружина совершает положительную работу.

Итак, деформированная пружина может совершить работу при возвращении в недеформированное состояние.

В рассмотренных примерах работу совершают силы тяготения и силы упругости. Как мы уже знаем, общая важная особенность этих сил состоит в том, что при движении по замкнутой траектории (когда тело возвращается в начальное положение) работа этих сил равна нулю. (Такие силы называют консервативными. Если между телами замкнутой системы действуют только консервативные силы, то, как мы увидим далее, механическая энергия системы сохраняется («консервируется»).)

Благодаря этому для системы тел, взаимодействующих посредством сил тяготения и упругости, можно определить потенциальную энергию как величину, характеризующую способность системы тел совершать работу и зависящую только от взаимного положения тел.

Потенциальная энергия системы тел характеризует ее способность совершать работу вследствие изменения взаимного положения взаимодействующих тел.

Если система тел совершает положительную работу, потенциальная энергия системы уменьшается. А если система тел совершает отрицательную работу, ее потенциальная энергия увеличивается. При этом

изменение потенциальной энергии системы тел равно работе сил упругости и тяготения, действующих со стороны тел системы, взятой со знаком минус:

Здесь Ep1 и Ep2 обозначают начальную и конечную потенциальную энергию системы тел.

(Мы приводим определение потенциальной энергии, применимое к механическим явлениям. В дальнейшем мы расширим и уточним это определение.)

? 1. Как изменяется потенциальная энергия системы «камень + Земля», когда камень движется вверх? вниз? Объясните свои ответы.

? 2. Как изменяется потенциальная энергия пружины, когда деформация уменьшается? увеличивается? Объясните свои ответы.

Нулевой уровень потенциальной энергии. Из формулы (1) следует, что физический смысл имеет только изменение потенциальной энергии: оно измеряется работой, совершенной телами системы.

Поэтому нулевой уровень потенциальной энергии (состояние системы, которому сопоставляется нулевое значение потенциальной энергии) выбирают так, чтобы упростить расчеты.

2. Потенциальная энергия поднятого груза

Когда груз массой m равномерно перемещается вертикально вниз на расстояние h, он совершает положительную работу mgh, потому что он действует на опору или поднес направленной вниз силой (весом груза), равной силе тяжести.

Следовательно, при уменьшении высоты груза на h потенциальная энергия груза уменьшается на mgh. (Важно понимать, что это потенциальная энергия системы взаимодействующих тел – груза и Земли.) Если сопоставить нулевой уровень потенциальной энергии наинизшему положению груза, то

потенциальная энергия груза массой m, поднятого на высоту h, выражается формулой

? 3. Брусок массой 200 г поднят на высоту 1 м над поверхностью стола высотой 80 см (рис. 30.3).


а) Чему равна потенциальная энергия бруска, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?
б) Чему равно изменение потенциальной энергии бруска при его падении на стол, если за нулевой уровень потенциальной энергии бруска принять уровень стола? уровень пола?

Эти примеры подтверждают, что имеет значение только изменение потенциальной энергии. Оно измеряется работой, совершенной телом или системой тел, и не зависит от выбора нулевого уровня потенциальной энергии.

3. Потенциальная энергия упругой деформации

При возвращении в недеформированное состояние сила упругости пружины совершает положительную работу

При этом потенциальная энергия пружины уменьшается на такую же величину. Если нулевому уровню потенциальной энергии сопоставить состояние недеформированной пружины, то

потенциальная энергия деформированной пружины жесткостью k выражается формулой

где x – деформация пружины.

Потенциальную энергию, выражаемую формулой (3), называют также потенциальной энергией упругой деформации. Она зависит от квадрата деформации. Поэтому потенциальная энергия сжатой пружины равна потенциальной энергии растянутой пружины, если модуль деформации пружины в обоих случаях один и тот же.

? 4. В начальном состоянии пружина жесткостью 200 Н/м сжата на 1 см. Как изменилась потенциальная энергия пружины, если в конечном состоянии:
а) пружина не деформирована?
б) сжата на 2 см?
в) растянута на 1 см?
г) растянута на 2 см?

? 5. Шар массой 200 г подвешен к пружине жесткостью 100 Н/м и находится в равновесии, Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Как изменилась потенциальная энергия шара за время, в течение которого он возвращался в положение равновесия?
в) Как изменилась за то же время потенциальная энергия пружины?
г) Как изменилась за то же время потенциальная энергия системы «шар + Земля + пружина»?

Дополнительные вопросы и задания

6. С высоты 20 м над поверхностью земли свободно без начальной скорости падает камень массой 300 г. За нулевой уровень потенциальной энергии камня примите уровень земли.
а) Чему равна потенциальная энергия камня в начальный момент?
б) Чему равна потенциальная энергия камня через 1 с после начала движения?
в) Через какое время после начала движения потенциальная энергия камня уменьшилась в 2 раза по сравнению с ее начальным значением?

7. Шар массой 1 кг брошен с поверхности земли с начальной скоростью 20 м/с под углом 30º к горизонту. Считайте, что сопротивлением воздуха при движении шара можно пренебречь.
а) До какой максимальной высоты поднялся шар?
б) Как изменилась потенциальная энергия шара за время подъема?

8. По реке с постоянной скоростью плывет плот. Как изменяется со временем:
а) кинетическая энергия плота?
б) потенциальная энергия плота?

9. Когда сжатую пружину сжали еще на 2 см, ее потенциальная энергия увеличилась в 9 раз.
а) Во сколько раз модуль конечной деформации пружины больше, чем модуль начальной деформации?
б) Чему равен модуль начальной деформации пружины?

10. Две пружины жесткостью 100 Н/м и 400 Н/м соединены последовательно. Систему соединенных пружин растянули на 5 см.
а) Чему равна деформация более мягкой пружины?
б) Чему равна деформация более жесткой пружины?
в) Потенциальная энергия упругой деформации какой пружины больше, и во сколько раз?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector