Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что обозначения F0 / 0 и F0 / 1 означают на этой диаграмме

Что обозначения F0 / 0 и F0 / 1 означают на этой диаграмме?

Недавно я взял на себя среду OpenStack, которая использует нейтронные сети с использованием туннелирования GRE. У нас была проблема с производительностью сети, и я определил, что это проблема с настройкой MTU в некоторых экземплярах виртуальной машины, установленной на значение по умолчанию 1500, тогда как их действительно нужно было установить ниже, например 1456, чтобы учесть инкапсуляцию пакетов. в пакетах через GRE.

Исследуя это, я наткнулся на эти 2 сайта:

На втором URL была эта диаграмма:

img1

Что обозначения F0 / 0 и F0 / 1 вокруг маршрутизатора на этой диаграмме означают?

@ 3iron ответ дал мне подсказку, что мне нужно. Обозначение означает, что на диаграмме есть несколько интерфейсов NIC на маршрутизаторе, и это делает ссылку на это.

  • F0 / 0 — интерфейс № 1
  • F0 / 1 — интерфейс № 2

ПРИМЕЧАНИЕ. Символ F означает, что сетевой адаптер / порт, скорее всего, является соединением Fast Ethernet.

Эта диаграмма с веб-сайта Cisco также показывает их. Вот ссылка на Фа 0/1, который, я считаю, является более типичным обозначением.

сс # 1

Другой интересный вывод состоит в том, что иногда обозначение может включать 3-ю цифру, чтобы обозначить, что интерфейс, на который ссылаются, не встроен в материнскую плату сетевого устройства. Приведенная выше диаграмма показывает некоторые примеры этого, т.е. T1 1/0/1. ПРИМЕЧАНИЕ. Префикс третьей цифры указывает, из какого «слота» на материнской плате идет порт.

Опять же, ссылка Cisco описывает эти слоты примерно так:

сс # 2

Мне также удалось выкопать эту ссылку: Руководство по номенклатуре интерфейсов маршрутизатора и коммутатора, которое описывает ссылку на F0 / 0 примерно так. Обратите внимание, что есть 2 типа ситуаций:

  • Фиксированный интерфейс серии роутер
  • Модульный интерфейс серии роутер

Эта запись изначально использовалась для фиксированных типов маршрутизаторов:

В маршрутизаторах серии с фиксированным интерфейсом номенклатура интерфейса имеет тип слот _ # / port_ #.

Но с появлением модульных маршрутизаторов это не означало, на какую карту расширения (WIC) ссылались. Таким образом, обозначение было расширено:

  • Новое соглашение об именах только для слотов WIC (WAN Interface Card) — это тип слота _ # / subslot _ # / port_ #.
  • Порты, установленные непосредственно на шасси, все еще используют классическое соглашение типа слот _ # / port_ #.

Кстати, на том же сайте была эта таблица, которая описывает обозначение F0 / 0 следующим образом:

сс # 3

Дополнительные поиски действительно обнаружили этот URL: Стандартные порты маршрутизатора, в которых были перечислены следующие типы портов:

  • Aux port: этот вспомогательный порт используется для подключения модема к маршрутизатору, который затем можно использовать для удаленного изменения конфигурации на маршрутизаторе.
  • Порт интерфейса дополнительного устройства (AUI): до того, как WIC стал стандартом для обеспечения расширения через дополнительный порт, AUI позволял использовать приемопередатчики, предоставляя вам возможность добавлять различные типы сетевых подключений, таких как оптоволоконные или медные Ethernet-соединения.
  • Последовательный: подключение модема или другого последовательного устройства, позволяющее использовать сетевой интерфейс WAN на маршрутизаторе.
  • Ethernet / Fast Ethernet / Gigabit Ethernet: стандартные сетевые интерфейсы, используемые для подключения различных сегментов сети.
  • Консоль: последовательный порт конфигурации для доступа из командной строки к управлению и настройке маршрутизатора. Обратитесь к рисунку 3-1, чтобы увидеть консольный порт.
  • Порт WAN Interface Card (WIC): поскольку доступно множество вариантов подключения к WAN (например, T1, ISDN, ADSL), этот порт можно использовать для добавления различных интерфейсов к стандартному маршрутизатору.
  • Порт аппаратной интерфейсной карты WAN (HWIC). С интеграцией сервисов в маршрутизаторы интерфейс WIC стал слишком ограниченным. Интерфейс HWIC был создан для поддержки более широкого спектра вариантов расширения оборудования, таких как коммутаторы и сервисные карты. Этот порт обратно совместим с большинством старых устройств WIC.
  • Ethernet — Ethernet, как правило, представляет собой физический интерфейс стандарта Ethernet IEEE 802.3, который работает на скорости 10 Мбит / с. Используемый медиа-стандарт — 10BaseT.
  • Fast Ethernet — Fast Ethernet обычно представляет собой физический интерфейс стандарта Ethernet IEEE 802.3u, который работает на скорости 100 Мбит / с. Используемый медиа-стандарт — 100BaseT.
  • Gigabit Ethernet — Gigabit Ethernet, как правило, представляет собой физический интерфейс стандарта Ethernet IEEE 802.3ab, работающий со скоростью 1000 Мбит / с. Используемый медиа-стандарт 1000BASE-T
  • Последовательный — Последовательные интерфейсы обычно используются для соединений WAN от ISP (интернет-провайдеров) для типов подключения, таких как Frame Relay, T1, T3 и т. Д.
  • FDDI Fibre Distributed Data Interface — сети FDDI работают на скорости 100 Мбит / с и используют механизм передачи токенов для предотвращения коллизий.
  • Token Ring — интерфейсы Token Ring могут работать со скоростью 4 Мбит / с или 16 Мбит / с. В сетях Token Ring токен передается по сети (настроенный в топологии кольца), что позволяет владельцу токена передавать кадр, чтобы избежать коллизии. Сети Token Ring давно исчезли из сетевой индустрии. Новые маршрутизаторы Cisco не имеют интерфейса Token Ring.
Читайте так же:
2 Тактное масло для лодочных моторов

Этот последний бит немного более показателен. Поскольку исторически Ethernet использовался для интерфейсов 10 Мбит / с, «F» на моей диаграмме «F0 / 0» и «F0 / 1», по-видимому, подразумевает, что интерфейс является соединением с поддержкой FastEthernet (10/100 МБ / с).

Однако в последнее время Ethernet также можно использовать взаимозаменяемо в Gigabit Ethernet, а также в портах 10G Ethernet, поэтому необходимо уделять особое внимание фактическому оборудованию, на которое ссылается диаграмма.

Размеры условных графических обозначений

Выборка материалов из ГОСТ, имеющих отношение к размерам изображений условных графических обозначений элементов электрических схем.

Все изображения вставлены из ГОСТ без изменений.

ГОСТ 2.701-84 Схемы виды и типы. Общие требования к выполнению (фрагмент)

2.4.2. Условные графические обозначения элементов изображают в размерах, установленных в стандартах на условные графические обозначения. Условные графические обозначения, соотношения размеров которых приведены в соответствующих стандартах на модульной сетке, должны изображаться на схемах в размерах, определяемых по вертикали и горизонтали количеством шагов модульной сетки М (черт. 2а). При этом шаг модульной сетки для каждой схемы может быть любым, но одинаковым для всех элементов и устройств данной схемы.

Условные графические обозначения элементов, размеры которых в указанных стандартах не установлены, должны изображать на схеме в размерах, в которых они выполнены в соответствующих стандартах на условные графические обозначения.

Размеры условных графических обозначений, а также толщины их линий должны быть одинаковыми на всех схемах для данного изделия (установки).

1. Все размеры графических обозначений допускается пропорционально изменять.

2. Условные графические обозначения элементов, используемых как составные части обозначений других элементов (устройств), допускается изображать уменьшенными по сравнению с остальными элементами (например, резистор в ромбической антенне, клапаны в разделительной панели).

ГОСТ 2.722-68 Машины электрические (фрагмент)

9. Размеры основных элементов условных графических обозначений, табл. 3.

НаименованиеОбозначение
1. ОбмоткаОбмотка
2. СтаторСтатор
3. РоторРотор
4. Щетка:на контактном кольцеЩетка
на коллектореЩетка

ГОСТ 2.721-74 Обозначения общего применения. Таблица 7

Приложение 2

ГОСТ 2.728-74 Резисторы, конденсаторы (фрагмент)

7. Размеры условных графических обозначений приведены в табл. 6.
Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

НаименованиеОбозначение
1. Резистор постоянныйРезистор постоянный
2. Резистор постоянный с дополнительными отводами:
а) одним
Резистор постоянный с дополнительными отводами
б) с двумяРезистор постоянный с дополнительными отводами
3. Резистор переменныйРезистор переменный
4. Резистор переменный с двумя подвижными контактамиРезистор переменный с двумя подвижными контактами
5. Резистор подстроечныйРезистор подстроечный
6. Потенциометр функциональныйПотенциометр функциональный
7. Потенциометр функциональный кольцевой замкнутый:
а) однообмоточный
Потенциометр функциональный кольцевой замкнутый
б) многообмоточный, например, двухобмоточныйПотенциометр функциональный кольцевой замкнутый
8. Потенциометр функциональный кольцевой замкнутый с изолированным участкомПотенциометр функциональный кольцевой замкнутый с изолированным участком
9. Конденсатор постоянной емкостиКонденсатор постоянной емкости
10. Конденсатор электролитическийКонденсатор электролитический
11. Конденсатор опорныйКонденсатор опорный
12. Конденсатор переменной емкости Конденсатор переменной емкостиКонденсатор переменной емкости
13. Конденсатор проходнойКонденсатор проходной

ГОСТ 2.730-73 Приборы полупроводниковые (фрагмент)

ПРИЛОЖЕНИЕ 2
Справочное
Размеры (в модульной сетке) основных условных графических обозначений

2. Тиристор диодный

5. Транзистор полевой

ГОСТ 2.732-68 ИСТОЧНИКИ СВЕТА (фрагмент)

4. Размеры условного графического обозначения лампы накаливания

ГОСТ 2.747-68 Размеры условных графических обозначений (фрагмент)

2. Размеры условных графических обозначений приведены в таблице.

НаименованиеОбозначение
1, 2. (Исключены, Изм. № 1)
3. По ГОСТ 2.755-87
5. Элемент нагревательныйЭлемент нагревательный
6?9. (Исключены, Изм. № 1).
10. Прибор измерительныйПрибор измерительный
11. Промежуток искровойПромежуток искровой
12. Предохранитель плавкийПредохранитель плавкий
13. По ГОСТ 2.756-87
14. Контакт телефонного гнезда и телефонного ключа без фиксацииКонтакт телефонного гнезда и телефонного ключа без фиксации
15. Контакт телефонного гнезда с фиксациейКонтакт телефонного гнезда с фиксацией
16. По ГОСТ 2.756?87
17. Гнездо телефонноеГнездо телефонное
пп. 18?21 по ГОСТ 2.755-87
пп. 22?23 по ГОСТ 2.756-76
пп. 24?25 по ГОСТ 2.728-74
26. (Исключен, Изм. № 1).
27. Обмотка трансформатораОбмотка трансформатора
28-32 (Исключены, Изм. № 1).
Пп 33, 34 по ГОСТ 2 730-73
35-40 (Исключены. Изм. №1).
41. Устройство квантовоеУстройство квантовое
42. (Исключен, Изм. №1).
43. ПротивовесПротивовес
44. Аппарат телефонный. Общее обозначениеАппарат телефонный. Общее обозначение
45. Коммутатор телефонный и факсимильный. Общее обозначениеКоммутатор телефонный и факсимильный. Общее обозначение
46. ТелефонТелефон
47. МикрофонМикрофон
48. Громкоговоритель (репродуктор)Громкоговоритель (репродуктор)
49. Головка акустическаяГоловка акустическая
50. Звонок электрическийЗвонок электрический
51. (Исключен, Изм. № 1).
52. Электрозапал (пиропатрон)Электрозапал (пиропатрон)
53-55. (Исключены, Изм. № 1).

ГОСТ 2.755-87 УСТРОЙСТВА КОММУТАЦИОННЫЕ И КОНТАКТНЫЕ СОЕДИНЕНИЯ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений приведены в табл.10.
Таблица 10

НаименованиеОбозначение
1. Контакт коммутационного устройства
1) замыкающий
Контакт коммутационного устройства
2) размыкающийКонтакт коммутационного устройства
3) переключающийКонтакт коммутационного устройства
2. Контакт импульсный замыкающий при срабатывании и возвратеКонтакт импульсный замыкающий при срабатывании и возврате
3. Переключатель двухполюсный шестипозиционный, в котором третий контакт верхнего полюса срабатывает раньше, а пятый контакт ? позже, чем соответствующие контакты нижнего полюсаПереключатель двухполюсный шестипозиционный
4. Искатель с двумя движениями с возвратом в исходное положение и многократным соединением контактных полей несколькими искателями, например двумяИскатель с двумя движениями с возвратом в исходное положение

ГОСТ 2.756-76 ВОСПРИНИМАЮЩАЯ ЧАСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ УСТРОЙСТВ (фрагмент)

НаименованиеОбозначение
1. Катушка электро-механического устройстваКатушка электромеханического устройства
2. Катушка электро-механического устройства с одной обмоткойКатушка электромеханического устройства с одной обмоткой
3. Катушка электромеханического устройства с двумя встречными обмоткамиКатушка электромеханического устройства с двумя встречными обмотками
4. Катушка электро-механического устройства с одним отводомКатушка электромеханического устройства с одним отводом
5. Катушка электро-механического устройства:
с одним дополнительным графическим полем
Катушка электромеханического устройства: с одним дополнительным графическим полем
с двумя дополнительными графическими полямиКатушка электромеханического устройства
6. Воспринимающая часть электротеплового релеВоспринимающая часть электротеплового реле

ГОСТ 2.767-89 РЕЛЕ ЗАЩИТЫ (фрагмент)

Размеры (в модульной сетке) основных условных графических обозначений
Таблица 4

Управляемые коммутаторы: в чем разница между Layer2 и Layer3

8

Сетевой коммутатор представляет собой аппаратное устройство, которое соединяет несколько устройств с использованием коммутации пакетов для приема и передачи данных, то есть пакетов, в одной локальной сети (LAN). Сетевой коммутатор использует адреса для передачи и приема пакетов на каждое из устройств и от них. Каждое устройство имеет два типа адресов, а именно MAC-адрес (Media Access Control) и IP-адрес (Интернет-протокол). Логически, два устройства обмениваются данными друг с другом на основе модели OSI (Open System Interconnect) с семью уровнями (сетевыми протоколами), и эти два устройства следуют сетевым протоколам, как показано ниже, для связи друг с другом и остальными устройства в сети.

Коммутатор 2-го уровня управления работает на 2-м уровне сетевой модели OSI, то есть на уровне канала передачи данных, и отправляет пакет на порт назначения с использованием таблицы MAC-адресов, в которой хранится MAC-адрес устройства, связанного с этим портом. 3-й уровень сетевой модели OSI, т. е. сетевой уровень, на котором маршрутизируется пакет с использованием аппаратного IP-адреса, широко используется в приложениях VLAN. Остновимся подробнее на различиях между коммутаторами Layer 2/2+ и Layer 3 в целом. Это поможет вам в процессе выбора оборудования.

l2-l3-swich-ntema3.jpg (46 KB)

Что такое коммутатор Layer 2/2+ ?

Коммутатор L2 соединяет устройства, обрабатывая пакеты, отправленные и полученные в сети, что означает, что они работают с использованием MAC-адресов устройств для перенаправления пакетов данных из исходного порта в порт назначения. Это достигается путем поддержки таблицы MAC-адресов, чтобы запомнить, каким портам назначены MAC-адреса, как показано на диаграмме ниже. MAC-адрес работает на 2-м уровне эталонной модели OSI. MAC-адрес отличает одно устройство от другого, причем каждому устройству назначается уникальный MAC-адрес. Он использует аппаратные методы коммутации для управления трафиком в локальной сети. Поскольку это коммутация L2, процесс происходит довольно быстро, потому что все, что он делает, это сортирует MAC-адреса на физическом уровне. Проще говоря, коммутатор L2 действует как мост между несколькими устройствами. Коммутатор L2+ добавляет некоторые функции L3, например, VLAN. Например: отслеживание DHCP, правило ACL в соответствии с IP-адресом, а L2+ поддерживает маршрутизацию с использованием статических маршрутов между VLAN.

l2-l3-swich-ntema1.jpg (48 KB)

Что такое коммутатор Layer 3?

В отличие от коммутаторов L2, свитчи L3 выполняют маршрутизацию с использованием IP-адресов, а таблица маршрутизации реализуется с помощью ASIC (специализированных интегральных схем). Коммутаторы L3 по сравнению с коммутаторами L2 осуществляют маршрутизацию намного быстрее при работе со специализированным оборудованием для маршрутизации пакетов данных, как показано на схеме. Коммутаторы L3 обладают возможностью быстрой коммутации и имеют более высокую плотность портов. Они значительно обновлены по сравнению с традиционными маршрутизаторами для обеспечения лучшей производительности, и основное преимущество использования коммутаторов L3 заключается в том, что они могут маршрутизировать пакеты данных без дополнительных сетевых транзитных участков, что делает их быстрее, чем маршрутизаторы. Однако им не хватает некоторых дополнительных функций настоящего маршрутизатора. Коммутаторы L3 обычно используются на крупных предприятиях. Как правило, коммутатор L3 — это не что иное, как высокоскоростной маршрутизатор, но без подключения к глобальной сети.

l2-l3-swich-ntema2.jpg (70 KB)

Разница между коммутаторами Layer 2/2+ и Layer 3

Основное различие между Layer 2 и Layer 3 заключается в функции коммутации и маршрутизации. Свитч L2 работает только с MAC-адресами и не заботится об IP-адресах или каких-либо элементах более высокого уровня. Но коммутатор L3 или многоуровневый коммутатор поддерживает все функции управления L2. Коммутатор L3 может выполнять статическую и ординальную маршрутизацию. Это означает, что коммутатор L3 имеет как таблицу MAC-адресов, так и таблицу IP-маршрутизации, и он также может осуществлять связь между VLAN и маршрутизацией пакетов между различными VLAN. Коммутатор, который добавляет только статическую маршрутизацию, известен как L2+ или L3. Помимо маршрутизации пакетов, коммутаторы L3 также включают в себя некоторые функции, которые требуют способности понимать информацию об IP-адресе данных, поступающих в коммутатор, такие как маркировка VLAN трафика на основе IP-адреса вместо ручной настройки порта. В общем, коммутаторы L3 более мощные, чем коммутаторы L2/2+. При выборе между коммутатором L2 и L3 следует обратить внимание на то, где он будет использоваться. Если у вас есть только домен L2, вы можете перейти на L2. В чистом домене L2 — где хосты связаны, коммутатор L2 будет работать хорошо. Обычно в топологии сети это называется уровнем доступа к сети. Если вам нужен коммутатор для объединения нескольких коммутаторов доступа и маршрутизации между виртуальными локальными сетями, тогда необходим коммутатор L3. Приведенная ниже таблица поможет вам в зависимости от поставленных задач выбрать коммутатор L 2/2+ или L 3.

Превратности проектирования: схемы и условные обозначения в телевидении

Телевизионные инженеры, выстраивая схему, должны использовать подходящие графические условные обозначения, уметь определять степень детализации схем и делать их работу ёмче. Начнем разбираться, как многократно увеличить наглядность схем, заменив килограммы текстовой документации.

Графические обозначения элементов на схеме вносят существенный вклад в её наглядность. Они должны быть однозначными, узнаваемыми и информативными: глядя на них, человек должен получать информацию о всех функциях элемента одновременно. Схемы как документы задуманы быть эффективнее простого текста.

Сегодня есть несколько семейств стандартов, устанавливающих общепринятые условные графические обозначения (УГО) элементов и определяющих, как выполнять схемы. Для телевизионной индустрии наиболее актуально семейство стандартов «Единая система конструкторской документации» (ЕСКД). ГОСТ 2.701 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению» и ГОСТ 2.702 «ЕСКД. Правила выполнения электрических схем» — два стандарта семейств, определяющие, как строить схемы.

Абстракции, графические обозначения и текст в трех видах схем

Неопытные проектировщики телевизионных комплексов, пытаясь построить схему, создают нечто вроде плаката-головоломки: много прямоугольников с текстом внутри, вокруг, или и там и там одновременно. На этих «схемах» все элементы обозначаются прямоугольниками, и при беглом взгляде один невозможно отличить от другого. Когда становится понятно, что каждое такое графическое обозначение не несёт практически никакой информации, приходится вчитываться в текст, что полностью обесценивает все преимущества графического представления информации.

Сам по себе прямоугольник в схемах не запрещен. В соответствии с ГОСТ 2.701:

«5.4.1 При выполнении схем применяют следующие графические обозначения:

  • УГО, установленные в стандартах Единой системы конструкторской документации, а также построенные на их основе;
  • прямоугольники;
  • упрощенные внешние очертания (в том числе аксонометрические).

При необходимости применяют нестандартизованные УГО».

Однако он нужен только в определённых случаях. В том же пункте, есть важное уточнение:

«Применение на схемах тех или иных УГО определяют правилами выполнения схем определенного вида и типа».

Правила для интересующих нас электрических схем определены в другом стандарте семейства — ГОСТ 2.702. В целом, правила применения прямоугольников в этом стандарте сводятся к обозначению функциональных частей и устройств, схемы которых невозможно привести, либо их нет смысла повторять. Подразумевается, что такие схемы будут выпущены или уже существуют, а в прямоугольники или вокруг них вписываются наименования функциональных частей или наименования устройств и обозначения документов, включающих эти схемы.

1Структурные схемы

Первые схемы, которые появляются в процессе проектирования -— структурные. Структурные схемы выполняются на самых ранних стадиях проектирования, когда устройство изделия понятно в первом приближении. Они предельно абстрактны, ведь схемы этих частей ещё только предстоит разработать, поэтому здесь используют преимущественно прямоугольники. С их помощью обозначают основные функциональные части изделия и показывают линиями связи между ними. Но когда нужно показать конкретный элемент, всё же нужно конкретное УГО, а не прямоугольник.

Рисунок 1. Пример структурной схемы канала изображения телецентра или теледома. Схема канала заканчивается УГО электрического соединителя

Если функциональных частей становится слишком много, чтобы не перегружать схему текстом, прямоугольники просто нумеруются, а наименования обозначенных частей выносятся в таблицу на поле схемы.

2Функциональные схемы

Функциональные схемы уже более конкретны. Они иллюстрируют процессы, поэтому абстрагированы от всего, что непосредственно не касается этих процессов. Здесь изображают функциональные части изделия: элементы, устройства и функциональные группы. Функциональные схемы разрабатываются на основе принципиальных: функции конкретных элементов уже определены, значит их необходимо указать с помощью конкретных УГО. В то же время, схемы функциональных частей, не участвующих в иллюстрируемых процессах непосредственно, избыточны, поэтому отдельные функциональные части необходимо выделять в отдельные схемы и приводить в виде прямоугольника, абстрагируясь от ненужных подробностей:

«5.2.2 Функциональные части и взаимосвязи между ними на схеме изображают в виде УГО, установленных в стандартах ЕСКД. Отдельные функциональные части допускается изображать в виде прямоугольников».

При этом ГОСТ предписывает в первую очередь позаботиться о наглядности схемы:

«5.2.3 Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой».

Из текстовой информации на функциональных схемах рекомендуется рядом с УГО или на свободном поле схемы указывать технические характеристики функциональных частей и — рядом с УГО на самой схеме — позиционные обозначения элементов, устройств и функциональных частей, которые были присвоены им на принципиальных схемах.

Рисунок 2. Пример функциональной схемы питания синхросигналом аппаратно-студийного комплекса. Функциональные группы А110, А220 и А330, имеющие самостоятельные схемы, показаны в виде прямоугольников

3Принципиальные схемы

Принципиальные схемы — самые подробные. Назначение этих схем — ознакомление с принципами работы, наладка, контроль и ремонт изделия. Также они служат основанием для разработки функциональных и монтажных схем, спецификаций и других документов.

В отличие от структурной и функциональной схемы, в принципиальной не используют абстракцию: она содержит и однозначно определяет каждый элемент.

«5.3.1 На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи».

На принципиальных схемах ГОСТ 2.702 предписывает использовать только установленные стандартами УГО.

«5.3.4 Элементы и устройства, УГО которых установлены в стандартах ЕСКД, изображают на схеме в виде этих УГО.

Примечание — Если УГО стандартами не установлено, то разработчик выполняет УГО на полях схемы и дает пояснения».

То есть, если даже УГО стандартом не установлено, то его нужно придумать. При этом учитывают те же принципы, что и для построения комбинированных УГО. В противном случае новое УГО так или иначе не будет сочетаться со стандартными обозначениями по ГОСТ 2.721, в результате чего пострадает наглядность схемы. Для облегчения чтения схем и упрощения жизни проектировщикам последний абзац пункта 5.3.29 ГОСТ 2.702 допускает применение прямоугольников, чтобы заменить избычточные фрагменты схем. Главное отличие от функциональных схем при этом — применение прямоугольника только для упрощения начертания и чтения схем!

Помимо отсутствия УГО телевизионных устройств в стандартах, инженеры часто некорректно используют прямоугольники из-забольшого количества электрических соединителей интерфейсов устройств. Как быть в случае, например, с телевизионным матричным коммутатором? Ответ довольно прост, если знать, что пункт 5.3.29 ГОСТ 2.702 позволяет помещать в прямоугольники, обозначающие устройства, их структурные или принципиальные схемы.

«На схеме изделия в прямоугольники, изображающие устройства, допускается помещать структурные или функциональные схемы устройств либо полностью или частично повторять их принципиальные схемы».

Таким образом, все, что нужно для решения этой проблемы -— это показать матричный коммутатор в виде прямоугольника, поместив внутрь его структурную или функциональную схему в объёме, достаточном, чтобы пояснить принцип его работы. Это потребует чуть больших усилий, но взамен вы получите: а) более наглядную схему; б) прямоугольник достаточного размера, чтобы обозначить все необходимые соединители.

Рисунок 3. Пример обозначения телевизионного матричного коммутатора на принципиальной схеме. Внутрь прямоугольника помещена функциональная схема телевизионного матричного коммутатора, взятая из документации производителя

Из текстовой информации на принципиальных схемах указываются:

  • позиционные обозначения элементов, устройств, частей и групп
  • номиналы резисторов
  • обозначения выводов, цепей
  • поясняющие надписи
  • характеристики входных и выходных цепей
  • параметры, подлежащие измерению на контрольных контактах и гнездах
  • адреса внешних соединений и сноски.

Позиционные обозначения — необходимая часть принципиальной схемы. Связь между перечнем элементов и схемой идет через позиционные обозначения. Такая связь нужна по двум причинам: 1) так однозначно определяется каждый элемент схемы, и 2) так проще ссылаться на конкретные элементы из других документов. О том, что при этом сильно упрощается контроль за полнотой всевозможных перечней для закупок и повышается качество управления проектом, и говорить не стоит.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector