Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Газовые горелки инфракрасного излучения

Газовые горелки инфракрасного излучения

Газовые горелки инфракрасного излучения — разновидность газовых горелок, используемая для нагрева предметов и обогрева помещений при помощи инфракрасного излучения металлических или керамических пластин, раскаляемых за счёт сжигания газа на их поверхности или в их толще.

Содержание

Принцип действия [ править | править код ]

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ

1—2 мм). Инфракрасное излучение также называют «тепловым», поскольку оно вызывает ощущение тепла на коже при облучении.

Теплота, переданная при этом от нагретого тела к холодному, определяется по закону Стефана-Больцмана [ источник не указан 4400 дней ] .

Конструкция [ править | править код ]

При проектировании газовых инфракрасных излучателей, можно выбрать два конструктивных решения:

  • Металлические листы нагреваются снаружи маленькими газовыми факелами или посредством потока горячих отработанных газов. При этом листы в соответствии с их размерами, температурой и состоянием поверхности создают диффузное инфракрасное излучение.
  • Стехиометрическую газовоздушную смесь пропускают либо через пористые или перфорированные пластины из керамического материала, либо через металлические сетки и сжигают её на поверхности последних.

В первом случае продукты сгорания не соприкасаются с материалами, нагреваемыми с помощью инфракрасного излучения в изолированном пространстве печи (например, в туннеле); при втором — горячие продукты сгорания поступают в сушильное пространство, то есть соприкасаются с нагреваемыми материалами.

В зависимости от конструктива, горелки называют «тёмные» и «светлые». При температуре насадки до 600 °C и трубным нагревательным элементом, горелка считается «тёмной», свыше 600 °С и металлической сеткой или керамическими пластинами — «светлой». Называют их так, потому что «светлые» горелки светятся в видимом диапазоне, подобно лампам накаливания. Однако, большая часть излучения (порядка 60 %) по-прежнему представляет тепловое излучение. Так же, «светлые» горелки выбрасывают отработанные газы в отапливаемое помещение, в то время как у «тёмных» возможно варьировать по желанию выбросами продуктов сгорания, либо в отапливаемое помещение, либо за его пределы. У «тёмных» горелок есть дымосос, который кроме того что выравнивает по всей длине трубного излучателя температурный поток, ещё и даёт возможность удалять продукты сгорания от излучателя, в то время как у «светлых» горелок такого дымососа нет конструктивно, и необходимо предусматривать принудительный отвод продуктов сгорания. Продукты сгорания газа в «светлых» горелках выводятся системой общеобменной вентиляции из верхней зоны помещения, реже — системами местной вентиляции.

Основные элементы «светлой» газовой горелки инфракрасного излучения: 1 — рефлектор; 2 — керамические пластины (насадки) с множеством микроскопических отверстий; 3 — редуктор; 4 — система автоматики; 5 — смеситель-инжектор; 6 — форсунка; 7 — пьезорозжиг.

Основные элементы «темной» газовой горелки инфракрасного излучения: 1 — рефлектор; 2 — трубный излучатель (нагревательные трубы); 3 — редуктор; 4 — система автоматики; 5 — смеситель-инжектор; 6 — горелка (дутьевая или инжекционная); 7 — пьезорозжиг; 8 — дымосос.

Так же существует такое понятие как «супертемные» излучатели. «Супертемные» излучатели имеют излучающие трубы много большего диаметра, до 400 мм, и температура их нагрева значительно ниже, до 200 °C, они имеют большую длину, до 200 м.п. и как правило изготавливаются сложной конфигурации под определённый объект.

Читайте так же:
Как перемотать леску на катушку

История создания газового инфракрасного обогревателя [ править | править код ]

Первый газовый инфракрасный обогреватель был изобретён и запатентован в 1933 году немецким конструктором Гюнтером Шванком.

Рабочие показатели температуры пламени паяльной лампы

  • 26-01-2015
  • 37
  • 3648

Нынешнее поколение “левшей” редко пользуется паяльной лампой, предпочитая ей электрический промышленный фен или газовую горелку, пользоваться которыми намного проще и безопаснее. А ведь еще 40-50 лет назад паяльная лампа была практически в каждой домашней мастерской слесаря или автолюбителя, поскольку была единственным инструментом, способным разогреть различные материалы до нужной температуры.

Паяльная лампа

Паяльная лампа сжигает в форсунке бензин, выдавая достаточно большую струю открытого пламя.

Но сдавать паяльную лампу в утиль в наш век научно-технического прогресса все же не стоит. Например, газовую горелку на сильном морозе разжечь практически невозможно. С промышленным феном ситуация не лучше: для его работы нужен постоянный источник электроэнергии. А старенькой паяльной лампе все эти сложности нипочем.

Принцип горения в паяльной лампе

Устройство паяльной лампы

Устройство паяльной лампы.

Паяльная лампа – нагревательный прибор, работающий на жидком топливе. Ее особенность в том, что в рабочем инструменте, горелке, горят пары заправленного в лампу топлива, а не оно само. Поступая с высокой скоростью в горелку, струя таких паров всасывает в себя находящийся вокруг горелки воздух, тем самым обеспечивая себя достаточным количеством кислорода.

Такое самообеспечение очень важно, поскольку для полного сгорания 1 кг жидкого горючего на основе углеводородов нужно определенное количество кислорода. В этом случае будет достигнуто полное сгорание, после которого от горючего останется только углекислый газ и вода.

Но если просто зажечь жидкое топливо, например, бензин, в открытой емкости, он не будет полностью сгорать. На это указывает оранжево-красное пламя подобных горящих очагов, к тому же с изрядным выделением копоти. Но если в такой очаг горения искусственно нагнетать воздух, то пламя с оранжево-красного станет голубым, практически без копоти, а его температура значительно увеличится. Причиной этих изменений станет находящийся в воздухе кислород.

Схемы регуляторов температуры жала паяльника.

Именно принцип искусственного обогащения пламени воздухом, позаимствованный у газовых светильников (т.н. рожков), положен в основу работы паяльной лампы. Причем регулируется такая подача воздуха самопроизвольно: пары топлива попадают в горелку, и чем больше поступление, тем мощнее будет струя и, соответственно, тем воздуха в себя она втянет больше.

Иногда случается, что струя втягивает слишком много воздуха, и кислород не успевает полностью сгорать. В этом случае температура горения заметно снижается, поскольку избыток воздуха, проходя через горелку, охлаждает его. Однако такое случается только при использовании некачественного топлива. При нормальном наполнении горелки парами топлива втянуть в нее лишнее количестве воздуха невозможно по чисто физическим причинам.

Топливо для паяльных ламп

Доработка жала паяльника

Доработка жала паяльника.

Читайте так же:
Как проверить светодиоды в фонаре

Универсальность паяльной лампы в том, что работать она может практически на любом, способном к возгоранию, жидком топливе: спирте, керосине, бензине, солярке, нефти. Но это вовсе не значит, что в каждую паяльную лампу можно заливать что угодно.

Топливо должно быть качественным. К тому же нужно учитывать, что неподходящий вид топлива очень быстро забьет своими испарениями форсунку. На сегодня паяльные лампы бывают трех видов:

  • керосиновые;
  • бензиновые;
  • спиртовые.

Принцип паяльной лампы сохранился и в работе газовой горелки, поэтому некоторые специализированные источники этот прибор тоже относят к паяльным лампам, выделяя его отдельным, четвертым, видом.

Заправлять лампу другим видом топлива, не соответствующим ее конструкции, категорически запрещается инструкцией по технике безопасности. И это правило должно неукоснительно соблюдаться. Ведь залитый в бензиновую “паялку” керосин сделает из нее инструмент наподобие огнемета. Попадая в горелку, он не успеет полностью испариться, следовательно, гореть будут не пары, а сам керосин. Нормально работать такой инструмент не будет.

Еще опаснее в керосиновую паяльную лампу заливать бензин. Бензин значительно быстрее керосина испаряется, и давление его паров в горелке будет в 6 раз больше расчетного. При попытке зажечь пары взорвутся, превратив полезный инструмент в опасную бомбу. Поэтому, если вы пользуетесь керосиновой паяльной лампой, заправлять ее нужно только чистым керосином, без каких-либо примесей, не используя смесей керосина с бензином или другим топливом.

Залуживание жала паяльника

Залуживание жала паяльника.

Та же ситуация и с бензиновой паяльной лампой. Ее нужно заправлять только чистым бензином. При этом показатель октанового числа бензина на работу инструмента практически не оказывает влияния: ни на быстроту воспламенения, ни на время горения, ни на температуру пламени. Но при выборе марки бензина не следует забывать, что у низкооктановых марок различных добавок и примесей намного меньше, поэтому при работе намного меньше будет загрязняться форсунка.

У спиртовых паяльных ламп маленький объем резервуара (всего 200-300 мл), соответственно, ее горение сильно ограничено во времени, поэтому сегодня вместо них мастера предпочитают пользоваться газовыми горелками.

Температура пламени

Существует убеждение среди значительной части пользователей, что качественно выполнить сложную пайку паяльной лампой невозможно и что она годится только для разогрева замерзших водопроводных и канализационных труб, прогрева двигателя при низких температурах и для других подобных работ.

Такое реноме возникло из-за невнимания к техническим характеристикам инструмента или непонимания принципа работы. Максимальную температуру, которую способно давать пламя, выходящее из паяльной лампы, 1100º С. Поэтому пытаться расплавить паяльной лампой железо, никель или хром – дело безнадежное. В то же время ее температуры вполне хватит для плавления свинца, цинка, олова или алюминия.

Чтобы не потратить время зря, лучше иметь под рукой данные плавления металлов:

Паяльник

Паяльник нужен дял выполнения мелкого ремонта электронных приборов, но в домашних условиях он применяется редко, поэтому покупать его не рентабельно, можно использовать его заменители.

  • олово – 230ºС;
  • висмут – 270ºС;
  • свинец – 330ºС;
  • цинк – 420ºС;
  • магний – 650ºС;
  • алюминий – 660ºС;
  • бронза – 830ºС;
  • латунь – 890ºС;
  • серебро – 960ºС;
  • неодим 1030ºС;
  • золото – 1060ºС;
  • медь – 1080ºС;
  • никель – 1450ºС:
  • железо – 1540ºС;
  • титан – 1660ºС;
  • платина – 1770ºС;
  • хром – 1900ºС;
  • молибден – 2620ºС.
Читайте так же:
Как правильно подобрать электроды для сварки

Опираясь на эти данные, легко определить, работа с каким металлом при помощи паяльной лампы может быть осуществима без труда, с какими – возможна, но с трудом, а за работу с какими браться бесполезно.

Но возможен и вариант, когда даже работа с легкоплавящимися металлами бывает неудачной. Причиной всему неправильное использование лампы, точнее непонимание физических свойств пламени. Ведь выходящее из горелки пламя не одинаково по своим физическим составляющим.

В зависимости от избытка или недостатка в нем кислорода, оно может иметь разную температуру.

Специалисты различают три вида пламени: восстановительное или нормальное; окислительное, образующееся при избытке кислорода в смеси и способствующее окислению металлов, и науглероживающее, когда в смеси переизбыток газов горючего. При обработке металла последним происходит насыщение его поверхности углеродом, что приводит к значительному повышению ее твердости, но одновременно и хрупкости.

Сама по себе даже максимальная температура пламени не может служить гарантией качества выполненной с помощью паяльной лампы работы. При работе с этим инструментом очень важное значение имеют знания основ пайки и особенно опыт работы. Если вы не обладаете ни первым, ни вторым, то лучше обратитесь за помощью к более опытному товарищу. Ведь, какой бы простой в эксплуатации ни была лампа, из-за использования в ее работе легковоспламеняющихся взрывоопасных жидкостей, она была и остается источником повышенной опасности.

Сколько составляет температура пламени газовой горелки

Сколько составляет температура пламени газовой горелки

Поджигая газовую горелку, мы запускаем процесс горения, в результате которого образуется пламя. Оно обладает четко обозначенной структурой и состоит из нескольких областей, каждая из которых имеет свои цветовые особенности и температуру. В данной статье мы подробно рассмотрим все характеристики пламени и его распределения.

Схематическое изображение пламени газовой горелки

Первым делом необходимо разобраться, из каких частей состоит пламя горелки. Сделать это можно с помощью простой схемы, которая приведена ниже.

На этом схематическом изображении буквами обозначены следующие области пламени:

  • О – область окислительного пламени; здесь воздушно-газовая смесь сгорает полностью, причем наблюдается повышенное содержание кислорода.
  • В – восстановительная область. Здесь газ сгорает не полностью, так как для этого ему недостаточно кислорода. В результате он распадается на молекулы, представляющие собой продукты сгорания. Именно они целиком выгорают в окислительном пламени.
  • А – область, в которой осуществляется образование воздушно-газовой смеси. Здесь процесс горения не происходит вообще.

Цифры на схеме предназначены для обозначения областей с разной температурой пламени. Последняя повышается по областям, начиная с области А и заканчивая восстановительной частью пламени. В процессе полного сгорания газа она несколько снижается:

  • Области 1-4. В самом низу температура составляет 300 градусов и повышается сперва до 320, а затем до 520 градусов. На участке, обозначенного цифрой 4 она достигает значения в 1540 градусов.
  • Области 5-8. Здесь температура составляет 1550-1560 градусов в центре и 450 градусов по краям. Максимальный показатель в 1570 градусов можно наблюдать на самом кончике восстановительной части пламени.
  • 9 – это окислительное пламя, температура которого достигает 1540 градусов.
Читайте так же:
Как из тиристоров сделать симистор

Горелки на газовый баллон: температура пламени

Сегодня большой популярностью пользуются горелки, которые закрепляются непосредственно на газовом баллончике. В зависимости от способа крепления они делятся на три основных вида:

  1. Резьбовые, которые просто навинчиваются на баллон. Такой способ позволяет обеспечить направленное горение и добиться факельной структуры пламени. Для работы с такими устройствами применяется газ, имеющий повышенное содержание пропана. Максимальная температура пламени газовой горелки составляет 1800 градусов, однако ее можно регулировать, убавляя или добавляя подачу газа либо кислорода с помощью специально предназначенных вентилей.
  2. Цанговые. Самые распространенные горелки, способные обеспечить температуру пламени до 1500 градусов.
  3. Пьезоэлектрические, которые отличаются удобством розжига пламени и использования для самых различных целей. Не предназначены для установки на баллончики с газом, но народные умельцы часто применяют именно такие устройства. Температура пламени достигает все тех же полутора тысяч градусов.

Одним из преимуществ таких горелок является возможность регулировать температуру пламени. Именно благодаря ей устройства можно применять для самых различных целей.

Сколько составляет температура пламени газовой горелки

Управление температурой пламени газовой горелки

Значение в 1800 градусов идеально подходит, к примеру, для сварки металлических заготовок, а также для прокаливания, прогрева в зимний период или выжигания отдельных участков трубопроводов. Для легкосплавных дисков и металлов достаточно лишь подобрать горелку, которая способна обеспечить направленное воздействие.

Но для других целей данная температура может оказаться чрезмерно высокой. Поэтому предлагаем ориентироваться на приведенные ниже рекомендации:

  • Для обработки древесины будет достаточно температуры в 700-800 градусов. Такое пламя позволит успешно справляться с выжиганием по дереву и украшением изделий из него, растопкой дров на мангале, в камине или в печи.
  • Не требуется максимальная температура пламени и для работы со стеклянными, кварцевыми, фарфоровыми изделиями, а также с заготовками из полимерных материалов. Кроме того, для их обработки пламя должно быть обязательно направленным и очень тонким.
  • Минимальная температура в 200-350 градусов идеально подойдет для приготовления пищи в туристическом походе или полевых условиях. Кроме того, на такое значение нужно настраивать ее, если требуется обработать тушки птицы, создать какое-то оригинальное оформление десертов или придать блюду более приятный цвет.

Качество и эффективность пламени зависит не только от температурных показателей. Кроме того, очень важно добиться правильного распределения кислорода. В противном случае возникнет недостаток воздуха, что в конечном итоге приведет к скоплению в горелке продуктов горения. Из-за этого появляется сажа, которая затем оседает на обрабатываемых деталях или приготавливаемых блюдах.

Наивысшая температура пламени горелки. Регулировка пламени горелки.

naivysshaya-temperatura-plameni-gorelki-regulirovka-plameni-gorelki

Длина подогревательного пламени зависит от его мощности, т. е. от количества горючего газа, подводимого к пламени, а также от рода горючего газа.

Наивысшая температура пламени горелки.

naivysshaya-temperatura-plameni-gorelki-regulirovka-plameni-gorelki

Температура пламени является одним из важнейших его свойств, от которого зависит скорость резки.

Читайте так же:
Фланец или фланец как правильно говорить

Температура пламени зависит от рода горючего и состава смеси, подаваемой в резак. Она различна для разных зон пламени.

Наиболее высокую температуру пламени дает ацетилен, обеспечивающий быстрый нагрев металла до температуры начала горения. Поэтому ацетилен является наиболее распространенным горючим газом, применяемым при кислородной резке.

Наибольшую температуру (около 3100°С) имеет ацетилено-кислородное пламя на расстоянии 3—4 мм от конца ядра по оси пламени. По мере удаления от ядра температура понижается.

Распределение температуры в нормальном ацетилено-кислородном подогревательном пламени по его длине показано на рис. 1.

Слишком высокая температура, развиваемая ацетилено-кислородным пламенем, часто приводит к оплавлению кромок разрезаемых деталей. Поэтому ацетилен, несмотря на все его преимущества, дает при резке менее чистый рез, чем водород, пары бензина и керосина и другие горючие газы.

Регулировка пламени горелки.

От правильной регулировки подогревательного пламени в значительной мере зависит качество резки. Кислородная резка ведется при нормальном или слегка окислительном пламени.

У резаков с концентрическим расположением мундштуков правильно отрегулированное пламя окружает режущую струю кислорода, при этом внутреннее ядро должно быть симметричным и везде одинаковым по яркости.

Если мундштуки резака сдвинуты, сечение кольцевого канала, из которого вытекает горючая смесь, нарушается и пламя получается односторонним. Таким пламенем резку производить нельзя, так как одна кромка разреза будет сильнее нагреваться, оплавляться и рез получится нечистым. Применение разработанных одним из институтов разъемных самоцентрирующихся мундштуков обеспечивает (вследствие самоцентрирования) симметричную форму пламени.

Очень часто происходит засорение канала, по которому проходит горючая смесь, в результате чего пламя разбивается на отдельные струйки и становится неравномерным. Таким пламенем резать нельзя, так как помимо получения некачественного реза заметно снижается производительность.

Регулировка пламени заключается в том, чтобы создать симметричное по отношению к режущей струе кислорода нормальное или слегка окислительное пламя необходимой мощности. Мощность пламени устанавливается в зависимости от толщины разрезаемого металла.

Обычно при правильно установленном давлении и полностью открытых кислородном и ацетиленовом вентилях (на резаке) в зажженном подогревательном пламени есть некоторый избыток ацетилена. Постепенным перекрыванием ацетиленового вентиля достигается нормальное пламя.

Нормальное пламя должно быть создано при не полностью открытых вентилях для возможности дальнейшей регулировки.

Регулировку на слегка окислительное пламя начинают с установления нормального пламени, а затем прибавляют кислород или убавляют ацетилен до тех нор, пока пламя не приобретет требуемой величины.

В правильно отрегулированном пламени (если регулировка производилась при закрытой режущей струе кислорода) после пуска струи давление кислорода подогревательного пламени несколько понижается и пламя становится ацетиленистым. Поэтому окончательную регулировку подогревательного пламени следует вести при открытом вентиле режущего кислорода, а после регулировки вентиль следует закрыть.

Если режущий кислород подается в резак по отдельному от подогревательного кислорода шлангу, дополнительная регулировка пламени не требуется.

Статья оказалась полезной?! Поделись с друзьями в социальных сетях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector