Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

101. Измерение тока и напряжения

§101. Измерение тока и напряжения

Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения.

Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть IА измеряемого тока I, обратно пропорциональная его сопротивлению RА. Большая часть Iш этого тока проходит через шунт.

Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора RA и шунта Rш можно по току IА, фиксируемому прибором, определить измеряемый ток:

где n = I/IА = (RA + Rш)/Rш — коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора IА,

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами.

Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты).

Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу.

Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.).

Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Измерение напряжения.

Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (Rд) (рис. 332,г). При этом на прибор приходится лишь часть Uv измеряемого напряжения U, пропорциональная сопротивлению прибора Rv.

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения Uv, фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (Rv+Rд)/Rv * Uv = nUv (107)

Величина n = U/Uv=(Rv+Rд)/Rv показывает, во сколько раз измеряемое напряжение U больше напряжения Uv, приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле Rд=(n— 1) Rv.

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры.

Читайте так же:
Какой моющий пылесос выбрать для дома отзывы

По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения.

Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале).

Отношение входного напряжения делителя U1 к выходному U2 (рис. 333, а) называется коэффициентом деления. При холостом ходе U1/U2 = (R1+R2)/R2 = 1 + R1/R2. В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

alt=»Рис. 333. Схемы включения делителей напряжения» width=»300″ height=»95″ />Рис. 333. Схемы включения делителей напряжения

выводам делителя подключен вольтметр (рис. 333,б).

Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра Rv достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы.

Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения.

Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение.

Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную — к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U1 и U2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков N1 и N2 обеих обмоток трансформатора, т. е.

Таким образом, подобрав соответствующее число витков N1 и N2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U1 может быть определено умножением измеренного вторичного напряжения U2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток.

Его выполняют в виде обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I1 и I2, проходящие по его обмоткам, будут обратно пропорциональны числу витков N1 и N2 этих обмоток, т.е.

Следовательно, подобрав соответствующим образом число витков N1 и N2 обмоток трансформатора, можно измерять большие токи I1, пропуская через электроизмерительный прибор малые токи I2. Ток I1 может быть при этом определен умножением измеренного вторичного тока I2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Читайте так же:
Какой кабель выбрать для варочной панели

Рис. 335. Проходной измерительный трансформатор тока

Рис. 335. Проходной измерительный трансформатор тока

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя.

Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU1/U2 и I1/I2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°).

Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измерений приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.).

В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Лаб. 3

Эти знаки обозначают полюса источника тока, к которым нужно подключать прибор.

2. Какова цена деления шкалы амперметра?

Если шкала имеет такой вид: 0 l l l l 5 l l l l 10 , то необходимо от большего значения отнять меньшее и разделить на количество промежутков (палочек) между цифрами.

3. Какую наименьшую и наибольшую силу тока можно измерить данным амперметром?

$C = 0.05 A$; $I_ = frac<0.05> <2>= 0.025 A$.

1. Соберите электрическую цепь согласно рисунку. Проверьте правильность сборки с учителем! Замкните цепь.

2. Начертите схему цепи и сплошной стрелкой укажите на ней направление тока в цепи, а пунктирной — направление дви­жения носителей заряда.

3. Измените на противоположное направление тока в цепи. Проверьте цепь с учителем! Напишите, как вы это сделали и повлияло ли изменение направления тока на силу тока и на свечение лампочки.

Поменяли местами провода на источнике тока и амперметре. Сила тока не изменилась.

4. Измерьте и занесите в таблицу значения силы тока I1, проте­кающего между клеммой «-» источника тока и ключом (уча­стки 1,2); силы тока I3, протекающего между ключом и лампочкой (участок 3); силы тока I4, протекающего между лампоч­кой и клеммой «+» источника тока (участок 4). Сделайте вы­вод о значении силы тока на различных участках цепи.

5. Начертите схемы электрических цепей при измерениях силы токов $I_3$ и $I_4$.

Схема 2 и Схема 3

6. Замените в последней цепи лампочку сначала резистором на панельке, затем резистором на держателях. Измерьте и запишите в таблицу значения силы токов в них $I_4’$ и $I_4’$.

7. Сравните значения силы токов $I_4$, $I_4’$ и $I_4»$ и сделайте выводы.

Включение амперметра в различных точках цепи не изменяет силы тока, а замена лампочки на резистор изменяет силу тока.

1. Почему сила тока в различных участках рассмотренной цепи одинакова?

Потому что в разных участках цепи ток проходит за одинаковое время.

2. Отразится ли на свечении лампочки исключение из электрической цепи ам­перметра? Почему?

Нет, не отразится. Потому что амперметр имеет маленькое сопротивление и практически не потребляет электричества.

3. Какой заряд прошел через поперечное сечение нити спирали лампочки за 1 мин свечения?

Т.к. сила тока лампочки равняется $0.5$ А, умножив это значение на количество секунд получим $30$ Кулон. Общая формула $q = I · t$.

Перенесите провод 3 с клеммы $C$ ключа на клемму $B$. Освободившуюся клемму $C$ ключа соедините дополнительным проводом с клеммой «+» источника. Включив (только с разрешения учителя!) цепь, объясните, как влияет положение ключа на режим работы лампочки и амперметра.

Поскольку амперметр и лампа ни к чему не подсоединены, а ключ подсоединён к клемме «+», положение ключа не повлияет на режим работы лампочки и амперметра.

Каким образом включают в электрическую цепь вольтметр

Задания Д12 № 38

Читайте так же:
Как подключить кондиционер самостоятельно

На рисунке приведён участок электрической цепи, по которому течёт ток. В каком из проводников сила тока наименьшая?

Обозначим силы тока и напряжения во всех участках цепи как: I1, U1; I2, U2; I3, U3; I4, U4 соответственно. Найдем силы тока во всех участках цепи.

Участок 1 соединен последовательно с участками 2 и 3 (соединенными между собой параллельно) и далее последовательно с участком 4. Следовательно, верны следующие соотношения:

Таким образом, наименьшая сила тока будет в участке 2 или в участке 3. По закону Ома:

следовательно , а . Таким образом, так как R2 Правильный ответ указан под номером 3.

Аналоги к заданию № 38: 7046 Все

Задания Д16 № 41

На железный проводник длиной 10 м и сечением 2 мм 2 подано напряжение 12 мВ. Чему равна сила тока, протекающего по проводнику? (Удельное сопротивление железа — 0,098 Ом · мм 2 /м.)

Сопротивление проводника можно рассчитать по следующей формуле:

где ρ — удельное сопротивление проводника (табличная величина, равная 0,098 Ом · мм 2 /м), l — длина проводника, S — площадь поперечного сечения проводника. Таким образом, R = 0,49 Ом.

Для нахождения силы тока воспользуемся формулой:

Получим, что сила тока будет приблизительно равна: I = 24 мА.

Правильный ответ указан под номером 1.

Задания Д16 № 68

В сеть, напряжение которой 120 В, последовательно с лампой включён резистор. Напряжение на лампе 45 В. Какова сила тока в цепи, если сопротивление резистора равно 6,25 Ом?

При последовательном соединении суммарное напряжение в цепи равно сумме напряжений, падающих на нагрузки. Следовательно, на резистор падает напряжение 120 − 45 = 75 В. По закону Ома для участка цепи сила тока в цепи прямо пропорциональна напряжению в цепи и обратно пропорциональна сопротивлению цепи:

где I — сила тока в цепи, U — напряжение в цепи, R — сопротивление цепи. Таким образом,

Правильный ответ указан под номером 1.

Задания Д12 № 146

Три резистора, сопротивления которых:  R1 = 3 Ом;  R2 = 6 Ом и R3 = 9 Ом, соединены последовательно. Вольтметр, подключённый параллельно второму резистору, показывает напряжение 12 В. Чему равно напряжение на всем участке цепи? Вольтметр считать идеальным.

По закону Ома сила тока, протекающего через второй резистор Поскольку соединение последовательное, сила тока на первом и третьем резисторе такая же. Вычислим напряжение на первом U1 = 3 Ом · 2 А = 6 В и третьем U3 = 9 Ом · 2 А = 18 В. Поскольку соединение последовательное напряжение на всём участке цепи 6 + 12 + 18 = 36 В.

Правильный ответ указан под номером 2.

Задание 17 № 186

Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R2, соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах. Абсолютная погрешность измерения силы тока составляет ±0,05 А, абсолютная погрешность измерения напряжения составляет ±0,2 В.

1) нарисуйте электрическую схему эксперимента;

2) установив с помощью реостата поочерёдно силу тока в цепи 0,4 А, 0,5 А и 0,6 А и измерив в каждом случае значение электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трёх случаев в виде таблицы (или графика) с учётом абсолютных погрешностей измерений;

3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

1) Схема экспериментальной установки:

2) Результаты измерения:

I, АU, В
10,40 ± 0,052,4 ± 0,2
20,50 ± 0,053,0 ± 0,2
30,60 ± 0,053,6 ± 0,2

3) Вывод: при увеличении напряжения на концах проводника сила тока в проводнике также увеличивается.

Элементы электрических цепей.

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны. Однако во многих случаях, их основные характеристики можно описать с помощью таких интегральных понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе совокупность электротехнических устройств, состоящую из соответствующим образом соединенных источников и приемников электрической энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и (или) информации, рассматривают как электрическую цепь . Электрическая цепь состоит из отдельных частей (объектов), выполняющих определенные функции и называемых элементами цепи . Основными элементами цепи являются источники и приемники электрической энергии (сигналов). Электротехнические устройства, производящие электрическую энергию, называются генераторами или источниками электрической энергии , а устройства, потребляющие ее – приемниками (потребителями) электрической энергии.

У каждого элемента цепи можно выделить определенное число зажимов ( полюсов ), с помощью которых он соединяется с другими элементами. Различают двух –и многополюсные элементы. Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы. Многополюсные элементы – это, например, триоды, трансформаторы, усилители и т.д.

Читайте так же:
Как пользоваться рейкой для нивелира

Все элементы электрической цепи условно можно разделить на активные и пассивные . Активным называется элемент, содержащий в своей структуре источник электрической энергии. К пассивным относятся элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности и конденсаторы) энергия. К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными , в противном случае они относятся к классу нелинейных . Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их как линейных, что существенно упрощает математическое описание и анализ процессов, определяется границами изменения характеризующих их переменных и их частот. Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях, называются параметрами элемента.

Если параметры элемента не являются функциями пространственных координат, определяющих его геометрические размеры, то он называется элементом с сосредоточенными параметрами . Если элемент описывается уравнениями, в которые входят пространственные переменные, то он относится к классу элементов с распределенными параметрами . Классическим примером последних является линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы, называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор – это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее определяется геометрическими размерами тела и свойствами материала: удельным сопротивлением r (Ом ? м) или обратной величиной – удельной проводимостью (См/м).

В простейшем случае проводника длиной и сечением S его сопротивление определяется выражением

В общем случае определение сопротивления связано с расчетом поля в проводящей среде, разделяющей два электрода.

Основной характеристикой резистивного элемента является зависимость (или ), называемая вольт-амперной характеристикой (ВАХ). Если зависимость представляет собой прямую линию, проходящую через начало координат (см.рис. 1,б), то резистор называется линейным и описывается соотношением

где — проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими параметрами. В частности безынерционному резистору ставятся в соответствие статическое и дифференциальное сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему по виткам катушки,

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего витки, на число этих витков , где .

Основной характеристикой катушки индуктивности является зависимость , называемая вебер-амперной характеристикой. Для линейных катушек индуктивности зависимость представляет собой прямую линию, проходящую через начало координат (см. рис. 2,б); при этом

Нелинейные свойства катушки индуктивности (см. кривую на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала, для которого зависимость магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного гистерезиса нелинейная катушка характеризуется статической и дифференциальной индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними. Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная диэлектрическая проницаемость =const. В этом случае зависимость представляет собой прямую линию, проходящую через начало координат, (см. рис. 3,б) и

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость является функцией напряженности поля, что обусловливает нелинейность зависимости (рис. 3,б). В этом случае без учета явления электрического гистерезиса нелинейный конденсатор характеризуется статической и дифференциальной емкостями.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ , называемой внешней характеристикой источника. Далее в этом разделе для упрощения анализа и математического описания будут рассматриваться источники постоянного напряжения (тока). Однако все полученные при этом закономерности, понятия и эквивалентные схемы в полной мере распространяются на источники переменного тока. ВАХ источника может быть определена экспериментально на основе схемы, представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах 1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого может изменяться с помощью переменного нагрузочного резистора (реостата) R Н .

Читайте так же:
Как заряжать гвозди в степлер

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода) является недопустимым. Токи и напряжения источника обычно могут изменяться в определенных пределах, ограниченных сверху значениями, соответствующими номинальному режиму (режиму, при котором изготовитель гарантирует наилучшие условия его эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами изменения напряжения и тока. Следует отметить, что многие источники (гальванические элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

где — напряжение на зажимах источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а); — внутреннее сопротивление источника .

Уравнение (1) позволяет составить последовательную схему замещения источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый идеальным источником ЭДС . Напряжение на зажимах этого элемента не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б. На основании (1) у такого источника . Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров его схемы замещения необходимо провести замеры напряжения и тока для двух любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим левую и правую части соотношения (1) на . В результате получим

где ; — внутренняя проводимость источника .

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником тока . Ток в ветви с этим элементом равен и не зависит от напряжения на зажимах источника, следовательно, ему соответствует ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника , т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия последовательная и параллельная схемы замещения источника являются эквивалентными. Однако в энергетическом отношении они различны, поскольку в режиме холостого хода для последовательной схемы замещения мощность равна нулю, а для параллельной – нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение имеет согласованный режим работы, при котором нагрузкой RН от источника потребляется максимальная мощность

Условие такого режима

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные источники ЭДС и тока являются источниками бесконечно большой мощности.

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А . Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при токе в ней I=20А потокосцепление y =2 Вб.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector