Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет оборотов редуктора на выходе. Подбор мотор-редуктора

Расчет оборотов редуктора на выходе. Подбор мотор-редуктора

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи. Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 2.1-2.20 [Л.1]. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т – выходной (тихоходный).

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т. д.); типу – зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т. д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т. д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.

1. Кинематическая схема редуктора

Исходные данные:

Мощность на ведущем валу транспортера

Угловая скорость вала редуктора

Передаточное число редуктора

Отклонение от передаточного числа

Время работы редуктора

2 – ременная передача;

3 – муфта упругая втулочно-пальцевая;

5 – ленточный транспортёр;

I – вал электромотора;

II – ведущий вал редуктора;

III – ведомый вал редуктора.

2. Кинематический расчет и выбор электродвигателя

2.1 По табл. 1.1 коэффициент полезного действия пары цилиндрических зубчатых колес η 1 = 0,98; коэффициент, учитывающий потери пары подшипников качения, η 2 = 0,99; КПД клиноременной передачи η 3 = 0,95; КПД плоскоременной передачи в опорах приводного барабана, η 4 = 0,99

η = η 1 η2 η 3 η 4 = 0,98∙0,99 2 ∙0,95∙0,99= 0,90

2.3 Требуемая мощность электродвигателя

где P III -мощность выходного вала привода,

h-общий КПД привода.

2.4 По ГОСТ 19523-81 (см. табл. П1 приложениях [Л.1]) по требуемой мощности Р дв = 1,88кВт выбираем электродвигатель трехфазный асинхронный короткозамкнутый серии 4А закрытый, обдуваемый, с синхронной частотой вращения 750 об/мин 4А112МА8с параметрами Р дв = 2,2кВт и скольжением 6,0%.

Номинальная частота вращения

где n c -синхронная частота вращения,

2.5 Угловая скорость

2.6 Частота вращения

где w I -угловая скорость двигателя,

w III -угловая скорость выходного привода

2.8 Намечаем для редуктора u =1,6; тогда для клиноременной передачи

= =3,81– что находиться в пределах рекомендуемого

2.9 Крутящий момент, создаваемый на каждом валу.

Крутящий момент на 1-м валу М I =0,025кН×м.

P II =P I ×h p =1,88×0,95=1,786 Н×м.

Крутящий момент на 2-м валу М II =0,092 кН×м.

Крутящий момент на 3-м валу М III =0,14 кН×м.

Читайте так же:
Как настроить телевизор через тюнер

2.10 Выполним проверку:

Определим частоту вращения на 2-м валу:

Частоты вращения и угловые скорости валов

3. Расчет зубчатых колес редуктора

Выбираем материалы для зубчатых колес такие же, как в § 12.1 [Л.1].

Для шестерни сталь 45, термообработка – улучшение, твердость НВ 260; для колеса сталь 45, термообработка – улучшение, твердость НВ 230.

Допускаемое контактное напряжение для прямозубых колес из указанных материалов определим с помощью формулы 3.9, , стр.33:

где s H limb – предел контактной выносливости;Для колеса

Допускаемое контактное напряжение принимаю

Принимаю коэффициент ширины венца ψ bRe = 0,285 (по ГОСТ 12289-76).

Коэффициент К нβ , учитывающий неравномерность распределения нагрузки по ширине венца, примем по табл. 3.1 [Л.1]. Несмотря на симметричное расположение колес относительно опор, примем значение этого коэффициента, как в случае несимметричного расположения колес, так как со стороны клиноременной передачи действует сила давления на ведущий вал, вызывающая его деформацию и ухудшающая контакт зубьев: К нβ = 1,25.

В этой формуле для прямозубых передач К d = 99;

Передаточное число U=1,16;

М III -крутящий момент на 3-м валу.

Программа написана в Exsel, очень проста в пользовании и в освоении. Расчет производится по методике Чернаского .
1. Исходные данные:
1.1. Допускаемое контактное напряжение, Мпа ;
1.2. Принятое передаточное отношение, U ;
1.3. Вращающий момент на валу шестерни t1, кН*мм ;
1.4. Вращающий момент на валу колеса t2, кН*мм ;
1.5. Коэффициент;
1.6. Коэффициент ширины венца по межосевому расстоянию.

2. Стандартный окружной модуль, мм :
2.1. допустимое мин;
2.2. Допустимое макс;
2.3 Принимаемое по ГОСТ.

3. Расчет количество зубьев :
3.1. Принятое передаточное отношение, u;
3.2. Принятое межосевое расстояние, мм;
3.3. Принятый модуль зацепления;
3.4. Количество зубьев шестерни (принятое);
3.5. Количество зубьев колеса (принятое).

4. Расчет диаметров колес ;
4.1. Расчет делительных диаметров шестерни и колеса, мм;
4.2. Расчет диаметров вершин зубьев, мм.

5. Расчет прочих параметров:
5.1. Расчет ширины шестерни и колеса, мм;
5.2. Окружная скорость шестерни.

6. Проверка контактных напряжений ;
6.1. Расчет контактных напряжений, Мпа;
6.2. Сравнение с допустимым контактным напряжением.

7. Силы в зацеплении;
7.1. Расчет окружной силы, Н;
7.2. Расчет радиальной силы, Н;
7.3. Эквивалентное число зубьев;

8. Допустимое напряжение изгиба :
8.1. Выбор материала шестерни и колеса;
8.2. Расчет допустимого напряжения

9. Проверка по напряжениям изгиба;
9.1. Расчет напряжения изгиба шестерни и колеса;
9.2. Выполнения условий.

Краткая характеристика прямозубой цилиндрической передачи

Прямозубая цилиндрическая передача является самой распространенной механической передачей с непосредственным контактом. Прямозубая передача менее вынослива, чем другие подобные и менее долговечна. В такой передаче при работе нагружается только один зуб, а также создается вибрация при работе механизма. За счет этого использовать такую передачу при больших скоростях невозможно и нецелесообразно. Срок службы прямозубой цилиндрической передачи гораздо ниже, чем других зубчатых передач (косозубых, шевронные, криволинейные и т.д.). Основными преимуществами такой передачи являются легкость изготовления и отсутствие осевой силы в опорах, что снижает сложность опор редуктора, а соответственно, снижает стоимость самого редуктора.

В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.

При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:

  • тип редуктора;
  • мощность;
  • обороты на выходе;
  • передаточное число редуктора;
  • конструкция входного и выходного валов;
  • тип монтажа;
  • дополнительные функции.

Тип редуктора

Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:

  • Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
  • Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
  • Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
  • Цилиндрический соосный под любым углом . Оси валов располагаются в одной плоскости.
  • В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
Читайте так же:
Сварочный инвертор фубаг какой лучше

Важно! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений.

  • Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
  • Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.

Таблица 1. Классификация редукторов по числу ступеней и типу передачи

Механический редуктор

Механи́ческий реду́ктор (от лат.  reducere «уменьшать») — механизм по передаче мощности вращением, главной функцией которого является редукция, то есть, снижение усилия, необходимого для привода устройства, преобразующего передаваемую мощность в полезную работу. Каноническим видом механического редуктора является пара взаимозацепленных цилиндрических шестерён, из которых ведущая шестерня меньшего размера, а ведомая — большего.

Содержание

Как это работает [ править | править код ]

Работа любого редуктора подпадает под действие Золотого правила механики: редуктор практически не изменяет передаваемую вращением мощность (с поправкой на КПД), а лишь взаимообратно изменяет две её составляющие — крутящий момент и угловую скорость. Величина изменения определяется передаточным отношением. При этом редукция усилия предполагает, что крутящий момент на входе в редуктор будет меньше, чем на выходе с него, а угловая скорость, соответственно, наоборот — на входе будет больше чем на выходе. Передаточное отношение любого подобного редуктора больше единицы, а сам термин «редуктор», упомянутый без каких-либо дополнительных определений к нему, подразумевает именно редуктор подобного плана.

В редких случаях (в основном, из компоновочных соображений) в технике применяются редукторы с передаточным отношением меньше единицы. Такой редуктор в русскоязычном речевом обиходе называется «повышающим редуктором». Определение «повышающий» здесь происходит как от факта повышения усилия, необходимого для привода конечного устройства, так и от повышения угловой скорости ведомой шестерни в таком редукторе. Формально, исходя из этимологии термина «редуктор», термин «повышающий редуктор» есть оксюморон, но фактически распространённого синонима в русском языке нет, а, возможно, более подходящий сюда термин «мультипликатор» в обиходе практически не используется и малопонятен. При этом такой термин как «повышающая передача» официально зафиксирован ГОСТ-ом и правомерно присутствует в инженерно-техническом лексиконе.

Классификация и характеристики редукторов [ править | править код ]

Классификация редукторов по ГОСТу [ править | править код ]

Редукторы классифицируются в зависимости от:

  1. вида применяемых зубчатых передач в кинематической схеме; [1]
  2. числа ступеней редукции; [1]
  3. взаимного расположения геометрических осей входного и выходного валов; [2]
  4. способа крепления редуктора [2]

Основные характеристики редукторов [ править | править код ]

  1. общее передаточное отношение;
  2. величина номинального крутящего момента на тихоходном валу;
  3. максимально возможная частота вращения.

Корпуса редукторов [ править | править код ]

В серийном производстве широко распространены стандартизованные литые корпуса редукторов. Чаще всего в тяжёлой промышленности и машиностроении применяются корпуса из литейного чугуна, реже из литейных сталей. Когда требуется максимально облегчить конструкцию применяют легкосплавные корпуса. На корпусе редуктора чаще всего имеются места крепления — лапы и/или уши, за которые перемещают и/или крепят редукторы к основанию. На выходе валов располагают уплотнения (сальники) для предотвращения вытекания масла. На корпусах редукторов зачастую располагают конструкционные элементы, предотвращающие увеличение давления внутри редуктора, возникающее от нагрева редуктора при его работе.

Читайте так же:
Из какой стали делают профильные трубы

В штучном производстве широко используются сварные корпуса, позволяющие получать индивидуальные конструктивные решения.

Передаточное отношение [ править | править код ]

Общее передаточное отношение всех редукторов, задействованных в конкретной кинематической цепи, равно произведению их передаточных отношений.

Редуктор со ступенчатым изменением передаточного отношения называется коробкой передач, с бесступенчатым — вариатор.

Мотор-редукторы

Мотор-редукторы – компактные сборные устройства из электродвигателя и редуктора, более удобные чем привода на базе простых редукторов. Мотор-редукторы очень разнообразны и являются универсальным элементом в электроприводе.

Области применения мотор-редукторов

Область применения мотор-редукторов охватывает множество сфер. Основные из них:

  • Машиностроительная промышленность (токарные/фрезеровочные станки, экструдеры)
  • Деревообрабатывающая промышленность
  • Горнодобывающая отрасль
  • Пищевая, химическая и фармацевтическая промышленность, ЖКХ (+ агрессивные среды)
  • Перерабатывающая промышленность
  • Металлургия, металлопрокат
  • Конвейерное производство, транспортеры, подъемники, ленточные и шнековые транспортеры, электрокары
  • Медицинская техника
  • Системы вентиляции
  • Системы управления, средства автоматизации с использованием электропривода (следящие системы, специнструменты, средства хранения/обработки информации)

Назначение мотор-редукторов

Основное назначение мотор-редукторов:

  • Изменение крутящего момента (повышение или понижение мощности) в сочетании с регулировкой скорости электрического двигателя
  • Замена приводов на базе редуктора (мотор-редуктор гораздо проще монтируется и обслуживается)
  • Использование в качестве элемента следящего электропривода
  • Регулировка скорости в приводных системах (движение конвейерных лент и т.п.)

Виды мотор-редукторов

Опросный лист по подбору редуктора

Мотор-редукторы представлены в большом ассортименте. Рассмотрим 4 вида, применяющихся в промышленности, и сгруппированные под категории. Информация дана для ознакомления, при выборе модели также рекомендуется консультация со специалистом.

Цилиндрические мотор-редукторы. Имеют высокий КПД и способность менять требуемое передаточное число в процессе эксплуатации. Предпочтительнее всего для конвейерных и прочих агрегатов, требующих менять скорость в процессе работы.

    Эргономичные привода под российские условия работы. Обработка зубчатых колес прецизионная. Редукторы не требуют обслуживания, отличаются бесшумным и плавным ходом.

      . Экономичная альтернатива многоступенчатым устройствам в приложениях, требующих высоких скоростей. Могут использоваться как 1-я ступень для цилиндро-червячных редукторов.
    • Насадные (одноступенчатые, двухступенчатые и трехступенчатые). Основаны на модульном принципе. Благодаря конструкции передают больший момент в меньшем корпусе. Экономичны (алюминиевый корпус), взаимозаменяемы по основным размерам с BONFIGLIOLI, SEW EURODRIVE, LENZE, NORD, FLENDER, DAVID BROWN.
    • Соосные (двухступенчатые и трехступенчатые). Вал и электродвигатель находятся на одной оси. Есть стандартные модели с типоразмерами, подходящими для всех применений, модели в чугунном корпусе, алюминиевом корпусе. Подходят для тяжелых применений (имеют жесткую усиленную конструкцию). Модели типоразмеров 202/3А-302/3А-452/3А на сегодня самые компактные в своем классе. Разработаны специально для критичных к длине привода приложений. . Лучше других подходят для фармацевтической или пищевой промышленности.

Червячные мотор-редукторы. Ротор и ИМ соединяются червячными колесом и винтом. Отличительные особенности – плавное ускорение и торможение (снижается износ). Лучше подходят для приложений, где не особо важен крутящий момент.

    Эргономичные привода под российские условия. Износостойки, передаточный механизм имеет высокую кинематическую точность благодаря спецобработке корпуса и червяка. Эргономичны и модульны, могут быть оптимизированы под работу с частотным преобразователем для бесступенчатой регулировки. Не требуют обслуживания.

    • В круглом корпусе (одноступенчатые, двухступенчатые). Модульны, имеют широкий выбор комплектующих. Взаимозаменяемы по размерам с SITI, BONFIGLIOLI, MOTOVARIO, STM, VARVEL, SEW EURODRIVE, LENZE, NORD.
    • В квадратном корпусе (одноступенчатые, двухступенчатые). Доступны в корпусах как из алюминия, чугуна, нержавеющей стали под работу в средах разной степени агрессивности (пищевая, химическая промышленность и т.д.). Используют высококачественные материалы (графитовые прокладки, подшипники KOYO, NSK, NBC, сальники NOK, Freudenberg и т.д.). Пригодны для работы в сервоприводах. . Редукторы в корпусе из нержавеющей стали. Протестированы на предмет течи.

    Экономичные червячные редукторы в квадратном корпусе. Не требуют техобслуживания. Работают при температурах -25…+130°С. Одноступенчатые привода (мощность до 15 кВт, крутящий момент до 1760 Нм).

Цилиндро-червячные мотор-редукторы. Представляют собой модернизированные червячные редукторы, к которым на входной вал добавлен цилиндрический редуктор. Лучшее применение находят в высокодинамичных (старт-стоп) и прочих приложениях с неравномерной нагрузкой.

    Адаптированы к эксплуатации в РФ. Поддерживают достоинства червячных и цилиндрических редукторов по части конструкции и материалов. Исполнения компактные.

      . Двухступенчатые с ортогональными осями. Крутящий момент и мощность до 800 Нм и до 1,8 кВт соответственно. . Двухступенчатые с ортогональными осями. Крутящий момент и мощность до 970 Нм и до 1,8 кВт соответственно.

Цилиндро-конические мотор-редукторы. В своей конструкции используют два типа передач (собственно, коническую и цилиндирическую). Лучшее применение находят там, где оси валов входа и выхода пересекаются. Такие приборы отличает повышенная устойчивость к нагрузкам переменного типа.

    (двухступенчатые, трехступенчатые и четырехступенчатые), со шлифованными зубьями. Имеют цельнолитой корпус и упрочненную конструкцию. Адаптированы для российских условий эксплуатации. Малый вес сочетается с высокой прочностью на разрыв. Нагрузочная способность до 1000 Нм.

Планетарные редукторы – тип редукторов, использующих в своей конструкции планетарную передачу, которая передает крутящий момент исполнительному механизму.

Расчет мотор-редуктора

Правильный расчет редуктора перед покупкой крайне важен, поскольку от него напрямую зависит срок службы как самого устройства, так и связанных с ним агрегатов. В противном случае существует большой риск их преждевременного износа из-за перегрузки или вероятность поломки. Именно поэтому при подборе следует учитывать:

  • тип;
  • мощность;
  • максимальный момент на выходном валу;
  • частоту оборотов;
  • передаточные числа;
  • КПД;
  • ремонтопригодность;
  • варианты исполнения в плане взрывозащищенности и взрывобезопасности.

Тип редуктора

На основе конструктивных особенностей различают: одноступенчатый и двухступенчатый червячный, горизонтально-цилиндрический, соосный цилиндрический и коническо-цилиндрический редуктор. В первых двух типах оба вала (входной и выходной) располагаются под углом 90° друг к другу (для моделей с двумя ступенями возможно и параллельное расположение), что позволяет монтировать их в любых пространственных положениях. Устройства на основе зубчатых колес в силу особенностей компоновки и принципов действия чаще всего устанавливаются горизонтально – следует учитывать это при их выборе. По сравнению с червячными приводами они обладают более высоким КПД (из-за меньших потерь мощности при зацеплении зубчатых колес) и выходным моментом (при равных габаритах и массе).

Передаточное число [I]

Одна из важнейших величин при расчете редуктора, представляющая собой отношение частоты вращения входного вала (N1) к частоте вращения выходного (N2), и определяющаяся по формуле I = N1/N2.

Следует помнить, что первая величина напрямую зависит от номинальных оборотов электромотора и никогда не должна превышать 1500 об./мин. Исключением являются лишь соосные цилиндрические редукторы, рассчитанные на частоту вращения на входе до 3000 об./мин.

Крутящий момент редуктора

При расчете редуктора важно учитывать, что необходимый момент вращения (Мс2) не соответствует напрямую моменту на выходном валу, а рассчитывается по формуле:

Mc2 = Mr2 x Sf ≤ Mn2, где:

  • Mc2 – расчетный момент;
  • Mr2 – необходимый момент, не превышающий номинального;
  • Sf – сервис-фактор;
  • Mn2 – номинальный момент.

Максимальный момент вращения является предельной нагрузкой на редуктор и недопустим при постоянной работе.

Эксплуатационный коэффициент (сервис-фактор)

Его величина рассчитывается экспериментальным путем и подразумевает испытание устройства продолжительностью работы, нагрузками разной величины и количеством стартов и остановок в течение часа. Для его определения под конкретные условия эксплуатации вы можете воспользоваться помощью наших специалистов.

Мощность привода

Она позволяет преодолевать возникающую при передаче движения силу трения. Ее величина определяется отношением момента вращения (M) к частоте оборотов (N) и рассчитывается согласно формуле: P = (MxN)/9550.

Мощность на выходном валу (P2) вычисляется как P2 = P x Sf, где последняя величина – сервис-фактор. Обязательно следует помнить, что из-за потерь, возникающих в результате трения при зацеплении зубчатых колес, выходная мощность должна всегда быть ниже входной.

Коэффициент полезного действия (КПД)

При расчете редуктора КПД определяется как отношение мощности на выходном валу к мощности, подаваемой на входной. Он измеряется в процентах и вычисляется по следующей формуле: n = (P2/P1) x 100. В устройствах, работающих по принципу червячной передачи, величина Р2 всегда будет заметно ниже, чем Р1, поскольку часть мощности расходуется при зацеплении пары во время передачи вращения.

На итоговый размер коэффициента полезного действия влияют такие факторы, как передаточное число (чем оно выше, тем КПД ниже), длительность эксплуатации (обуславливающая износ элементов агрегата), тип и состав смазочных материалов, а также частота их замены (поскольку от них в широких пределах зависит изменение коэффициента трения).

Типы взрывозащищенного исполнения

Выделяют 3 основные категории редукторов и мотор-редукторов по классу взрывозащищенности:

  • Е – устройства с повышенной степенью защищенности. Пригодны для эксплуатации в любых условиях, в том числе при возникновении внештатных ситуаций. Благодаря высокой герметичности корпуса подходят для использования в средах взрывоопасных и горючих газов и газо-воздушных смесей без риска воспламенения последних;
  • D – мотор-редукторы со взрывонепроницаемым корпусом, неразрушимым в случае взрыва самого агрегата. Отличаются полной герметичностью оболочки и безопасностью, которая позволяет использовать их в средах любых взрывоопасных газов и смесей, а также при предельно высоких эксплуатационных температурах;
  • I – устройства с увеличенной искробезопасностью. Подразумевают поддержку взрывобезопасного тока в питающей цепи в соответствии с конкретными производственными условиями.

Показатели надежности

Подразумевается срок службы (ресурс) тех или иных частей агрегата при условии продолжительной эксплуатации. Для валов и элементов передачи (зубчатых колес, червячных пар) он составляет:

  • у редукторов планетарного, коническо-цилиндрического, конического и цилиндрического типов – 25 000 часов;
  • у редукторов глобоидного, червячного и волнового типов – 10 000 часов.

Для подшипников, используемых в указанных ниже редукторах, ресурс составляет:

  • коническо-цилиндрических, планетарных, цилиндрически и конических – 12 500 часов;
  • червячных – 5 000 часов;
  • волновых, глобоидных – 10 000 часов.

При расчете редукторов нужно учитывать, что указанные конструктивные элементы должны оставаться в работоспособном состоянии в течение срока, составляющего не менее 90% от приведенных величин. Это относится только к нормальным условиям эксплуатации. При их нарушении (например, несвоевременной замене масла) скорость износа комплектующих резко увеличится, а ресурс сократится.

Наше предприятие «ТехПривод» предлагает широкий выбор редукторов и мотор-редукторов по оптимальным ценам, в любых требуемых объемах и с доставкой во все регионы страны. Чтобы рассчитать мощность, момент и другие требуемые параметры оборудования, свяжитесь со специалистами компании.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector