Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать класс точности прибора

Как рассчитать класс точности прибора

2.2. Погрешности измерений

Ни одно измерение не выполняется идеально точно, всегда по различным причинам существует погрешность, т.е. отклонение ре­зультата измерения от истинного значения измеряемой величи­ны. Причиной погрешности может стать несовершенство методики измерения, используемых средств измерений, органов чувств человека-оператора, а также влияние внешних условий.

Все погрешности, не связанные с грубыми ошибками (промахами, возникающими вследствие недосмотра экспериментатора или неисправности аппаратуры), имеют случайную и систематическую составляющие. Случайные погрешности изменяют величину и знак при повторных измерениях одной и той же величины. Значение случайной погрешности измерения невозможно предвидеть и, следовательно, исключить. Для уменьшения их влияния проводят несколько измерений величины и берут среднее арифметическое из полученных значений.

Систематические погрешности остаются постоянными по величине и знаку или закономерно изменяю­тся при повторных измерениях одной и той же вели­чины. Систематические погрешности разделяются на методические (несовершенство метода измерений; в том числе влия­ние средств измерения на объект, свойство которого изме­ряется), инструментальные (зависящие от погрешности применяемых средств измерений), внешние (обусловленные влиянием условий проведения измерений) и субъективные (обусловленные индивидуальными особенностями оператора).

Различают абсолютную и относительную погрешность измерения.

Под абсолютной погрешностью измерения понимают разность между полученным в ходе измерения и истинным значением физической величины:

Без сравнения с измеряемой величиной абсолютная погрешность ничего не говорит о качестве измерения. Одна и та же погрешность в 1 мм при измерении длины комнаты не играет роли, при измерении длины тетради уже может быть существенна, а при измерении диаметра проволоки совершенно недопустима.

Поэтому вводят относительную погрешность, показывающую, какую часть абсолютная погрешность составляет от истинного значения измеряемой величины. Относительная погрешность представляет собой отно­шение абсолютной погрешности к истинному значению измеряемой величины:

Относительная погрешность обычно выражается в процентах.

Результат измерения величины принято записывать в виде:

При записи абсолютной погрешности ее величину округляют до двух значащих цифр, если первая их них является единицей, и до одной значащей цифры во всех остальных случаях. При записи измеренного значения величины последней должна указываться цифра того десятичного разряда, который использован при указании погрешности.

Из формул (2.1) и (2.2) следует, что для нахождения погрешностей измерений необходимо знать истинное значение измеряемой величины. Поэтому этими формулами можно пользоваться только в тех редких случаях, когда проводятся измерения констант, значения которых заранее известны. Цель же измерений, как правило, состоит в том, чтобы найти не известное значение физической величины. Поэтому на практике погрешности измерений не вычисляются, а оцениваются.

В частности, относительную погрешность находят как отно­шение абсолютной погрешности не к истинному, а к измеренному значению величины:

Способы оценки абсолютной погрешности разные для прямых и косвенных измерений.

Максимальную абсолютную погрешность при прямых измерениях находят как сумму абсолютной инструментальной погрешности и абсолютной погрешности отсчета: D х= D хприб + D хотсч (2.4)

Погрешность отсчета является случайной и устраняется при многократных измерениях. Если же проводится одно измерение, она обычно принимается равной половине цены деления шкалы измерительного прибора.

Обратимся теперь к анализу погрешностей средств измерения. В зависимости от условий применения средств измерения различают основную и дополнительную погрешности. Основная погрешность – это погрешность средств измере­ний, используемых при нормальных условиях; дополнительная погрешность – это погрешность средств измерений, возникающая в результате отклонени­я значения одной или более влияющих величин от нормального значения.

Способ задания пределов допускаемой основной абсолютной погрешности измерительных средств определяется зависимостью погрешности от значения измеряемой величины. Если абсолютная погрешность измерительного прибора не зависит от измеряемой величины, то погрешность называется аддитивной и ее предел может быть выражен одним числом:

Зона погрешности в этом случае ограничена двумя прямыми линиями, параллельными оси абсцисс (рис.2.1а). Источники аддитивной погрешности – трение в опорах, неточность отсчета, дрейф, наводки, вибрации и другие факторы. От этой погрешности зависит наименьшее значе­ние величины, которое может быть измерено прибором.

Если погрешность прибора зависит от измеряемой величины, то она называется мультипликативной и предел допускаемой абсолютной погрешности выражается формулой D хмакс приб = ± (а + вх ), (2.6)

где в – постоянная величина, вх – предельное значение мультипликативной погрешности, а – предельное значение аддитивной погрешности.

Таким образом, мультипликативная погрешность прямо пропорциональна значению измеряемой величины х. Ис­точники мультипликативной погрешности – действие влия­ющих величин на параметры элементов и узлов средств измерений. Зона погрешности при наличии аддитивной и мультипликативной составляющей показана на рисунке 2.1 б.

Читайте так же:
Как правильно подключить узо и автоматы

Инструментальная погрешность электроизмерительных приборов определяется их классом точности. Класс точности (максимальная приведенная погрешность) – это отношение максимальной абсолютной погрешности прибора к пределу измерения величины (полному значению шкалы). Его, как и относительную погрешность, выражают в процентах. Класс точности показывает, сколько процентов максимальная инструментальная погрешность составляет от всей шкалы прибора:

ГОСТом установлено 8 классов точности измерительных приборов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Зная класс точности прибора и предельное значение измеряемой величины, можно определить абсолютную и относительную инструментальную погрешность измерения:

Из формулы (2.9) видно, что чем ближе значение измеряемой величины к пределу измерения, тем меньше относительная инструментальная погрешность.

У приборов, аддитивная составляющая погрешности ко­торых преобладает над мультипликативной , класс точности выражается одним числом. К таким приборам относится большинство аналоговых стрелочных приборов. Относительная инструментальная погрешность в этом случае находится просто по формуле (2.9).

Класс точности средств измерения, у которых аддитив­ная и мультипликативная составляющие основной погреш­ности соизмеримы, обозначается двумя числами, разделен­ными косой чертой: c / d . Причем класс точности должен удовлет­ворять условию c / d > l . К приборам, класс точности которых выражается дробью, относятся цифровые показывающие приборы. Их максимальная относительная погрешность определяется по формуле:

Для сравнения погрешностей измерения цифровых и стрелочных измерительных приборов постройте самостоятельно график зависимости относительной погрешности измерения постоянного напряжения от его величины приборами АВО-63 и Щ4313 на пределе 2В.

Класс точности или максимальная инструментальная погрешность приборов обычно приводится в его паспорте. Для менее точных приборов, если в паспорте ничего не указано, максимальная инструментальная погрешность принимается равной половине цены или цене деления шкалы.

Для прямых измерений сначала оценивается абсолютная погрешность, а затем относительная. При оценке погрешности косвенных измерений величины поступают следующим образом. Сначала находят абсолютные погрешности величин, полученных в ходе прямых измерений. Затем вычисляют относительную погрешность исследуемой величины, пользуясь для этого одной из формул, приведенных в таблице "расчет погрешностей". Формула относительной погрешности зависит от того, по какой формуле находят значение измеряемой величины. И только после этого находят абсолютную погрешность измеряемой величины, выраж ая ее и з формулы (2.3).

Класс точности

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.
Читайте так же:
Красный фиксатор резьбы как открутить

Обозначение класса точности

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

  • абсолютной;
  • относительной;
  • приведенной.

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Читайте так же:
Как проверить якорь на межвитковое замыкание тестером

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

  • грубой (С);
  • нормальной (В);
  • повышенной (А).

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

Класс точности и цена деления электроизмерительного прибора

Важнейшей характеристикой электроизмерительного прибора является точность, которая определяется погрешностью средств измерений. Класс точности электромеханического измерительного прибора определяется по формуле

, (1.12)

где – абсолютная погрешность измерения,– максимально возможное значение измеряемой величины. По смыслу, класс точности прибора – это заданная в процентах приведённая погрешность.

Электроизмерительные приборы по степени точности делятся на семь классов, которые на шкале прибора обозначают цифрами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

По классу точности приборов можно определить наибольшую абсолютную погрешность , которую может иметь прибор в любой точке шкалы:

(1.13)

При постоянной абсолютной погрешности данного прибора относительная погрешность будет возрастать при уменьшении отклонений стрелки. Поэтому для получения возможно меньших относительных погрешностей необходимо добиваться наибольшего отклонения стрелки (не меньше чем на половину шкалы).

Для того, чтобы определить тип и назначение данного прибора, область применения и точность на шкале прибора наносятся определённые условные обозначения:

,,– амперметр, миллиамперметр, микроамперметр, шкалы которых градуированы соответственно в амперах, миллиамперах и микроамперах;

V,,– вольтметр, милливольтметр, киловольтметр градуированы соответственно в вольтах, в милливольтах, в киловольтах;

, – приборы предназначены для измерения, соответственно, постоянного тока, переменного тока и универсальный;

2,5 – класс точности прибора (приведённая погрешность 2,5%);

1,5 kV – напряжение, при котором испытана изоляция корпуса прибора, в киловольтах;

При проведении измерений необходимо знать цену деления шкалы прибора. Цена деления определяет изменение электрической величины при отклонении стрелки прибора на одно деление. Размерность цены деления зависит от рода измеряемой электрической величины. Например, вольтметр рассчитан на измерение напряжений от 0 до 100 вольт. Шкала имеет 50 делений. Тогда цена деления .

Если шкала прибора неравномерная, то цена деления различна в разных частях шкалы. В этом случае цена деления определяется для каждой части шкалы.

Расширение пределов измерения электроизмерительных приборов

Рис. 1.5. Схема шунтирования амперметра

Измеряемый ток Iравен сумме токов, текущих через амперметр, и сопротивление шунта

. (1.14)

Напряжение на участке АВ

. (1.15)

Из формулы (1.15) с учётом соотношения (1.14), следует

. (1.16)

В этой формуле величина , показывающая во сколько раз измеряемый ток больше тока протекающего через амперметр, называется шунтирующим множителем. Следовательно, для расчёта сопротивления шунта необходимо задать шунтирующий множитель и знать сопротивление амперметра.

Рис. 1.6. Схема cдобавочным сопротивлением

Читайте так же:
Как правильно пользоваться газовым резаком видео

Падение напряжения Uна участке АВ равно сумме падений напряжений на вольтметреи на добавочном сопротивлении . По закону Ома

. (1.17)

Из формулы (1.17) находим

(1.18)

Отсюда с учётом, что из выражения (1.18), получаем

, (1.19)

где величина называется множителем добавочного сопротивления, которая показывает во сколько раз измеряемое напряжение больше падения напряжения на вольтметре. В соответствии с формулой (1.19) для вычисления добавочного сопротивления необходимо задать множитель добавочного сопротивления и знать внутреннее сопротивление вольтметра.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Класс точности средств измерений

Класс точности СИ обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами средств измерений, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений.

    Классы точности присваиваются средствам измерений при их разработке (по результатам приемочных испытаний). В связи с тем что при эксплуатации их метрологические характеристики обычно ухудшаются, допускается понижать класс точности по результатам поверки (калибровки). Таким образом, класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Классы точности конкретного типа СИ устанавливают в НД. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. эталон единицы величины — техническое средство, предназначенное для воспроизведения, хранения и передачи единицы величины.

Способы нормирования и формы выражения метрологических характеристик

Пределы допускаемых основной и дополнительных погрешностей следует выражать в форме приведенных, относительных или абсолютных погрешностей в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений конкретного вида. Пределы допускаемой дополнительной погрешности допускается выражать в форме, отличной от формы выражения пределов допускаемой основной погрешности.

Пределы допускаемой основной погрешности устанавливают в последовательности, приведенной ниже:

Устанавливаются пределы допускаемой абсолютной погрешности по формуле:

Δ = ± а или Δ = ± (а + b·x)

где Δ — пределы допускаемой абсолютной основной погрешности (в единицах измеряемой величины или условно в делениях шкалы)

Устанавливаются пределы допускаемой приведенной основной погрешности по формуле:

где γ — пределы допускаемой приведенной основной погрешности в %,

Δ — пределы допускаемой абсолютной погрешности,

p — положительное число, выбираемое из ряда 1·10 n , 1,5·10 n , (1,6·10 n )*, 2·10 n , 2,5·10 n , (3·10 n )*, 4·10 n , 5·10 n , 6·10 n (n = 1, 0, -1, -2 и т.д.)

Устанавливается нормируещее занчение Хn

  • Для средств измерений с равномерной, практически равномерной или степенной шкалой, а также для измерительных преобразователей, если нулевое значение измеряемого параметра находся на краю или вне диапазона измерений нормирующее значение устанавливается равным большему из пределов измерений. Для средств измерений, нулевое значение измеряемого параметра которых находится внутри диапазона измерений, нормирующее значение устанавливается раным большему из модулей пределов измерений.
  • Для электроизмерительных приборов с равномерной, практически равномерной или степенной шкалой и нулевой отметкой внутри диапазона измерений нормирующее значение допускается устанавливать равным сумме модулей пределов измерений.
  • Для средств измерений физической величины, для которых принята шкала с условным нулем, нормирующее значение устанавливают равным модулю разности пределов измереинй.
  • Для средств измерений с установленным номинальным значением нормирующее значение устанавливают равным этому номинальному значению.
  • Для измерительных приборов с существенно неравномерной шкалой нормирующее значение устанавливают равным всей длине шкалы или её части, соответствующей диапазону измерений. В этом случае пределы абсолюной погрешности выражают, как и длину шкалы, в единицах длины.

Устанавливаются пределы допускаемой относительной основной погрешности по формуле:

  • где с = b + d; d = a / |хк|
    δ — пределы допускаемой относительной основной погрешности в %,
    Δ — пределы допускаемой абсолютной основной погрешности (в единицах измеряемой величины или условно в делениях шкалы)
    х — значение измеряемой величины,
    хк — наибольший (по модулю) из пределов измерений,
    а, b — положительные числа, не зависящие от х.
    q, c, d — положительное число, выбираемое из ряда 1·10 n , 1,5·10 n , (1,6·10 n )*, 2·10 n , 2,5·10 n , (3·10 n )*, 4·10 n , 5·10 n , 6·10 n (n = 1, 0, -1, -2 и т.д.)
    * не устанавливается для вновь разрабатываемых средств измерений,
    для средств измерений конкретного типа допускается устанавливать не более пяти различных пределов допускаемой основной погрешности при одном и том же значении степени n.
    В обоснованных случаях пределы допускаемой относительной оснвоной погрешности устанавливают по более сложной формуле или в виде графика либо таблицы.
    В стандартах или технических условиях на средтсва измерений должно быть установлено минимальное значение х, начиная от которого применим принятый способ выражения пределов допускаемой относительной погрешности.
    Соотношение между числами с и d устанавливаются в стандартах на средства измерений конкретного вида .
Читайте так же:
Какова цвета фаза и ноль

Пределы допускаемых дополнительных погрешностей устанавливают одним из следующих способов:

    • в виде постоянного значения для всей рабочей области влияю-щей величины или в виде постоянных значений по интервалам рабочей области влияющей величины;
    • путем указания отношения предела допускаемой дополнительной погрешности, соответствующего регламентированному интервалу влияющей величины, к этому интервалу;
    • путем указания зависимости предела допускаемой дополнительной погрешности от влияющей величины (предельной функции влияния);
    • путем указания функциональной зависимости пределов допускаемых отклонений от номинальной функции влияния.

    Обозначение классов точности средств измерений в документации :

    • Для средств измерений пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей или относительных погрешностей, причем последние установлены в виде графика, таблицы или формулы, классы точности в документации обозначаются прописными буквами латинского алфавита или римскими цифрами.
    • В необходимых случаях к обозначению класса точности буквами латинского алфавита добавляют индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, соответствуют буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.
    • Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме приведенной погрешности или относительной погрешности в соответствии с формулой δ = Δ / х = ± q, классы точности в документации следует обозначаются числами, которые равны этим пределам погрешности, выраженными в процентах. Обозначение класса точности таким образом, дает непосредственное указание на предел допускаемой основной погрешности.
    • Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме относительных погрешностей в соответствии с формулой δ = ± [c + d·(|хк / х| — 1)], классы точности в документации обозначаются числами с и d, разделенных косой чертой.
    • В документации на средства измерений допускается обозначать классы точности так же, как на средтсвах измерений.
    • В эксплуатационной документации на средство измерений конкретного вида, содержащей обозначение класса точности, содержится ссылка на стандарт или технические условия, в которых установлен класс точности этого средства измерений .

    Обозначение классов точности на средствах измерений :

    • Условные обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений.
    • При указании классов точности на измерительных приборах с существенно неравномерной шкалой, для информации, дополнительно указываются пределы допускаемой основной относительной погрешности для части шкалы, лежащей в пределах, отмеченных специальными знаками (например точками или треугольниками). К значению предела допускаемой относительной погрешности в этом случае добавляют знак процента и помещают в кружок. Обращаем ваше внимание на то, что этот знак не является обозначением класса точности.
    • Обозначение класса точности допускается не наносить на высокоточные меры, а также на средства измерений, для которых действующими стандартами установлены особые внешние признаки, зависящие от класса точности, например параллелепипедная и шестигранная форма гирь общего назначения.
    • За исключением технически обоснованных случаев, вместе с условным обозначением класса точности на циферблат, щиток или корпус средств измерений наносится обозначение стандарта или технических условий, устанавливающих технические требования к этим средствам измерений.
    • На средства измерений, для одного и того же класса точности которых в зависимости от условий эксплуатации установлены различные рабочие области влияющих величин, наносятся обозначения условий их эксплуатации, предусмотренные в стандартах или технических условиях на эти средства измерений .

    Расшифровка обозначений классов точности на средствах измерений :

    Обозначение класса точностиФорма выражения погрешностиПределы допускаемой основной погрешностиПримечание
    на средстве измеренийв документации
    0,5Класс точности 0,5Приведеннаяγ = ±0,5%нормирующее значение выражено в единицах измеряемой величины
    Класс точности 0,5γ = ±0,5%нормирующее значение принято равным длине шкалы или её части
    Класс точности 0,5Относительнаяδ = ±0,5%δ = Δ / х
    0,02/0,01Класс точности 0,02/0,01δ = ±[0,02 + 0,01·(|хк / х| — 1)] %δ = ±[c + d·(|хк / х| — 1)]

    Класс точности хотя и характеризует совокупность метрологических свойств данного средства измерений, однако не определяет однозначно точность измерений, так как последняя зависит от метода измерений и условий их выполнения .

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector