Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает кривошипно шатунный механизм

Как работает кривошипно шатунный механизм

Шатун является частью кривошипно-шатунного механизма двигателя и служит для передачи усилий от поршня к коленчатому валу и, наоборот, от коленчатого вала к поршню в зависимости от направлений действующих сил.

Обтекаемости стержня шатуна придается серьезное значение. Для этого шатун надо обработать на грубом наждачном камне, чтобы уменьшить массу, а полировку выполнить на войлочном круге мелкой наждачной пастой. Окончательно обработанные шатуны не должны отличаться по массе друг от друга больше чем на 1-2 грамма. Облегченный и полированный шатун легче стандартного на 100-120 г.

При подготовке к сборке двигателя увеличенного рабочего объема стандартный шатун требует переделки. Поршень диаметром 92 мм рассчитан на палец диаметром 25 мм (вместо 22 мм в стандартном двигателе М-412). Кроме того, различно у этих поршней и расстояние от оси бобышек до верхней части днища. Поэтому расточка верхней головки шатуна производится несоосно прежнему отверстию (рис. 22). После расточки головки шатуна под размер 26,27+0,02 мм в отверстие запрессовывается готовая разрезная втулка под поршневой палец от двигателя ГАЗ-24 или втулка, самостоятельно изготовленная из рекомендованных материалов. Окончательная расточка или развертка отверстия под поршневой палец производится индивидуально при наличии уже облегченных пальцев диаметром 25 мм.

Не все стандартные шатуны годятся для описанной переделки. Подбор шатунов нужно производить по следующему признаку. Для надежной работы шатуна после расточки под втулкой должно оставаться "металла головки", не считая стержня, не менее 2,5-З мм. Учитывая смещение нижней части расточенного отверстия на 3 мм вниз, исходная толщина материала под втулкой поршневого пальца должна быть не менее 5,5- 6,0 мм. По этому размеру и следует подбирать шатуны, годные под расточку.

По последнему признаку шатуны лучше всего подбирать из одной или соседних весовых групп, чтобы облегчить дальнейшую подгонку по массе.

Цветовой индекс весовой ГРУППЫ наносится на крышке шатуна согласно табл. 26.

При сборке стандартного двигателя или его ремонте важно знать разбивку на группы отверстий головки шатуна. Цветовая маркировка наносится по головке шатуна (табл. 27).

Поршневой палец двигателя ВАЗ в отличие от всех ранее выпускавшихся двигателей в нашей стране имеет неподвижную посадку в шатуне; соответственно нет в шатуне и запрессованной втулки.

Такая конструкция практически не дает возможности произвести разборку узла поршень-палец-шатун,

Масса головки шатуна, г

Одна белая полоса

Две белые полосы

Одна черная полоса

Две черные полосы

Одна зеленая полоса

Две зеленые полосы

Одна красная полоса

Диаметр отверстия, мм

так как при распрессовке ломается поршень. Это следует иметь в виду, планируя ремонт или переборку двигателя. Сборка этого узла производится с предварительным нагревом шатуна до 240° С в термопечи и требует определенной сноровки, ибо шатун быстро охлаждается, а в охлажденном шатуне изменить положение пальца нельзя. Если нет печи, то можно порекомендовать нагрев верхней головки шатуна газовой горелкой до появления первых цветов побежалости, но не сильнее, так как нагретый докрасна шатун будет деформироваться при сборке.

Коленчатый вал является одной из наиболее ответственных и наиболее сложных в конструктивном и производственном отношении деталей двигателя. Недостаточная надежность коленчатого вала, как правило, служит причиной повышенных износов и сокращения срока службы двигателя. От прочности коленчатого вала во многом зависит возможность форсировки двигателя.

Исходя из условий работы двигателя к конструкции коленчатого вала предъявляют следующие требования: статическая и динамическая уравновешенность; прочность, жесткость и износостойкость шеек вала; отсутствие опасных резонансных колебаний; обтекаемость форм; высокая точность изготовления и обработки; возможно малая масса.

Двигатель М-412 имеет некоторое предрасположение к возникновению крутильных колебаний, может быть, из-за того, что передний конец коленчатого вала несколько перегружен. Здесь приводы масляного насоса, распределителя и распределительного вала, всей системы газораспределения, водяного насоса с вентилятором, генератора. Конструкторы предполагают, что именно с этим связан и относительно небольшой срок службы распределителя при предельных нагрузках на двигатель. Действительно, в условиях автомобильных соревнований распределитель приходится менять через каждые 8-10 тыс. км пробега, но это не является "криминалом", так как опыт эксплуатации стандартных и форсированных двигателей с обычными нагрузками позволяет утверждать, что в этих условиях срок службы распределителя соответствует пробегу в 100 тыс. км и более. Других последствий резонансных крутильных колебаний не обнаружено. В таком случае имеет смысл эксперимент со снятием противовесов с коленчатого вала для уменьшения его массы в целях увеличения мощностных показателей при переходных режимах (рис. 23). В настоящее время можно считать, что коленчатые валы с обрезанными противовесами, облегченные на 2,5 кг для ВАЗа и 6,0 кг для М-412, по сравнению со стандартными вполне работоспособны и дают эффект в улучшении динамики автомобиля. Срезать противовесы можно на обычном фрезерном станке с обязательной динамической балансировкой перед установкой коленчатого вала в двигатель. Перед обработкой коленчатого вала или перед его монтажом обязательно проводится обмер диаметров шатунных и коренных шеек микрометром.

Читайте так же:
Как просверлить отверстие под конфирмат

Кстати, в литературе имеются сведения, что при подготовке спортивного автомобиля BMW-1800 на некоторых образцах двигателей устанавливаются коленчатые валы без противовесов.

Не вдаваясь в подробный анализ причин, можно рекомендовать использовать коленчатые валы с диаметром коренных шеек 61,94+0,01 мм и шатунных шеек 56,00-0,01 мм для двигателя М-412.

Вкладыши двигателя М-412 (шатунные и коренные)-тонкостенные, триметаллические. Основу вкладышей составляет стальная лента толщиной 1,4 мм, покрытая слоем свинцовистой бронзы 0,25 мм. Верхний антифрикционный слой представляет собой сплав свинца с индием; глубина последнего слоя 0,02-0,03 мм.

Такие тонкостенные вкладыши обладают хорошей гибкостью и при монтаже точно принимают форму постели. Монтаж вкладышей должен производиться с особой точностью, тщательностью, так как даже небольшие шероховатости постели или попадание под вкладыш твердых частиц искажают его форму, что не только ухудшает отвод тепла от шейки коленчатого вала, но и меняет величину зазора между шейкой и вкладышем, отчего заметно увеличивается их износ.

Вкладыши двигателя М-412 и ВАЗ не требуют индивидуальной подгонки по месту благодаря высокой точности изготовления. Ручная шабровка может только нарушить тонкий верхний антифрикционный слой. Заменять вкладыши в двигателе лучше со снятием коленчатого вала.

Характерной неисправностью двигателя М-412 по общему мнению считается выход из строя вкладышей независимо от их типа, литража двигателя, степени сжатия, вида соревнований и даже марки автомобиля. Поэтому возникла мысль перейти на конструкцию коленчатого вала не с подшипниками скольжения, а с подшипниками качения.

Коленчатый вал на подшипниках качения в собранном виде показан на рис. 24. Основным его достоинством является заметное уменьшение потерь на трение, благодаря чему можно снизить требования к качеству масла и системе смазки в целом, так как подшипникам качения хватает смазки способом разбрызгивания. Наша промышленность, особенно в производстве двухтактных двигателей для автомобилей и мотоциклов, освоила массовое изготовление валов на роликовых и шариковых подшипниках. Эти двигатели в спортивном варианте надежно работают при 9000-10000 об/мин, что весьма важно для гонщиков.

Некоторые западноевропейские фирмы изготавливают спортивные двигатели не только с коленчатыми валами на подшипниках качения, но и с комбинированной системой — на подшипниках качения и подшипниках скольжения.

Э.Г. Сингуринди вместе с конструкторами Кировского завода и автомобилистами Ленинградского оптико-механического объединения также была предпринята попытка изготовления в 1969-1970 гг. сборного коленчатого вала, где использовались коренные шариковые подшипники и роликовые шатунные. Основные размеры коленчатого вала оставались без изменения. Что касается выбора подшипников, то наружные размеры их были ограничены: для коренных- расстоянием между шпильками крепления коренных крышек блока цилиндров, для шатунных- размером кривошипной части шатуна (рис. 25-29).

Исходя из компоновочных соображений и соответствия подшипников расчетным нагрузкам на коренную шейку устанавливались два шариковых подшипника № 110 (первая мелкая серия), на шатунную- два роликовых подшипника № 292206.

Роль внутренней обоймы роликовых подшипников выполняет сама шатунная шейка, поэтому твердость ее должна быть не менее HRC 60-65. Радиус кривошипа был оставлен 35 мм.
Изготовление коленчатого вала- дело далеко не простое. С изготовлением заготовок деталей вала особых трудностей не было.

Однако надо, сказать, что точные расчеты коленчатого вала на прочность вследствие сложности его фор-мы и невыявленности точного характера действия расчетных нагрузок, зависящего от жесткости вала и его опор, а также других причин, практически невозможны. Данные показывают, что напряжения в элементах коленчатого вала, полученные при его лабораторных испытаниях, могут отличаться от расчетных в 2-3 раза.

Весьма сложной оказалась и технология сборки. Был испорчен тройной комплект деталей, прежде чем удалось собрать один вал. Поэтому тем, кто возьмется за изготовление сборного коленчатого вала, необходимо учесть некоторые практические рекомендации.

Во-первых, нужно помнить, что такой вал является сборным, но не разборным, т. е. он собирается один раз и навсегда. Значит, во избежание неисправимых ошибок при запрессовке лучше иметь по 1-2 штуки подшипников, щек и шеек сверх комплекта.

Во-вторых, начиная сборку (рис. 30) с запрессовки шариковых подшипников на соответствующие шейки, не забудьте поставить распорную шайбу между каждой парой подшипников. Свободная посадка подшипника на шейку не годится. В этом случае надо заменить либо шейку, либо подшипник. Затем собираются 4 секции, каждая из двух щек и одной шатунной шейки с роликовыми подшипниками, свободно, но без зазоров садящихся на свои шейки. В связи с тем что посадочные концы шеек запрессовываются в отверстия щек, сборка должна производиться после предварительного нагрева щек и охлаждения шеек по возможности быстро. Собранные секции проверяются на правильность геометрии на специальной плите. Опорными поверхностями для этой и всех дальнейших проверок являются точно обработанные (не ниже 7 класса) грани щек.

Читайте так же:
Какие методы включает разрушающий контроль сварных соединений

Проверенные секции собираются попарно с помощью второй и четвертой коренных шеек по такой же технологии. Полученные теперь уже две секции опять обязательно проверяются на плите с применением шлифованных брусков одинаковых размеров.

Последний, самый ответственный момент сборки вала — соединение двух последних секций между собой средней коренной шейкой. Запрессовка переднего и заднего концов коленчатого вала уже труда не представит.

Если после сборки вала при окончательной проверке на плите его кривизна во всех плоскостях оказалась не более 0,02-0,03 мм, считайте, что вам повезло. Такой вал можно устанавливать в двигатель. Для установки собранного вала в двигатель посадочные места коренных подшипников блока цилиндров растачиваются под размер 80-0,02 мм, а нижнее отверстие шатуна — под размер 72-0,02 мм. Расточку блока цилиндров лучше производить за одну установку на станке, чтобы сохранилась строгая соосность постелей под коренные подшипники. При этом возникает необходимость в снятии части металла со шпилек крепления крышек коренных подшипников и болтов крепления крышки шатуна. К этому вынуждают наружные размеры подшипников. Однако в процессе эксплуатации собранного нами вала нареканий на крепление не было.

Правильно собранный и закрепленный в блоке цилиндров вал вращается с легкостью, близкой к легкости вращения велосипедного колеса. Точно собранный коленчатый вал практически в балансировке не нуждается. Например, при проверке нашего вала его дисбаланс оказался в пределах 3-5 г/см.

Уже отмечалось, что подшипникам качения в двигателе достаточно смазки разбрызгиванием, но дополнительно можно использовать смазку под давлением, подаваемую в отверстия коренных подшипников блока цилиндров. Для этого в масляных отверстиях нарезается резьба М10 и вворачиваются пробки типа жиклеров карбюратора с отверстием 0,7 мм.

Маховик в автомобильном двигателе служит для выравнивания скорости вращения коленчатого вала, вывода из мертвых точек кривошипно-шатунного механизма и осуществления вспомогательных тактов рабочего процесса. Кроме этого, маховик выполняет несколько конструктивных функций. На его обод напрессован венчик для прокрутки двигателя стартером, а на торцевую шлифованную поверхность опирается фрикционный диск сцепления.

С точки зрения подготовки стандартного двигателя к соревнованиям нас больше интересует первая и главная часть функций маховика, так как их выполнение позволяет получить необходимую равномерность хода двигателя.

Нет ли здесь резерва полезной мощности для спортивного двигателя?

Есть. Нужно уменьшить массу маховика. Причем каждый грамм, "снятый" на максимальном удалении от центра маховика, полезнее нескольких-граммов, "снятых" ближе к центру и имеющих поэтому незначительный радиус вращения. Ведь нам важно не просто уменьшение массы маховика, а уменьшение величины его момента инерции.

Однако вопрос облегчения маховика не так прост. Теоретические и экспериментальные исследования показывают, что с увеличением равномерности крутящего момента (равномерности хода двигателя), достигаемой за счет достаточной величины махового момента (кинетической энергии, накапливаемой маховиком), заметно улучшаются условия работы двигателя и механизмов трансмиссии. Автомобиль лучше трогается с места, износ его деталей вследствие ослабления ударности нагрузки и колебаний, сопутствующих неравномерному ходу двигателя, уменьшается, работа двигателя делается более спокойной.

Нами был произведен, ориентировочный расчет размеров маховика М-412 и ВАЗ, необходимых: для равномерной работы двигателя при наименьших устойчивых оборотах (холостой ход), для обеспечения нормального пуска двигателя и трогания автомобиля с места при наименьших оборотах и мгновенном включении сцепления.

Размеры расчетного маховика оказались меньше, причем настолько, что на такой маховик невозможно было бы поставить сцепление. Значит, маховик можно было значительно облегчить, оставив его прежние размеры. Наш новый маховик весил всего 4 кг, вместо 8кг, сохранив свою прочность (рис. 31, 32).

Предлагаемый вариант облегченного маховика испытан в большом числе различных соревнований и на разных двигателях, так что можно рекомендовать его широкое применение. Единственным и безусловным условием является динамическая балансировка облегченного маховика, произведенная отдельно от коленчатого вала.

Не следует забывать, что в двигателе М-412 маховик крепится на фланец коленчатого вала в любом положении, а в двигателе ВАЗ при установке маховика на коленчатый вал необходимо, чтобы метка (конусообразная лунка) около зубчатого обода маховика и ось шатунной шейки первого цилиндра находились в одной плоскости и по одну сторону от оси коленчатого вала.

Читайте так же:
3000 Кельвинов какой цвет

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:

  • подвижные: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками или кривошип, маховик.
  • неподвижные: блок цилиндров (является базовой деталью двигателя внутреннего сгорания) и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.

Содержание

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразовывается во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунные шейки
  • коренные шейки
  • противовес

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразовывается в поступательное движение поршня.

Применение

См. также

Другие способы преобразования вращательного движения в прямолинейное

Ссылки

  • Проставив сноски, внести более точные указания на источники.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Двигатель внутреннего сгорания
  • Механизмы
  • Детали машин и механизмов

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Кривошипно-шатунный механизм» в других словарях:

кривошипно-шатунный механизм — кривошипно ползунный механизм; отрасл. кривошипно шатунный механизм Рычажный четырехзвенный механизм, в состав которого входят кривошип и ползун … Политехнический терминологический толковый словарь

кривошипно-шатунный механизм — alkūninis mechanizmas statusas T sritis Energetika apibrėžtis Keturgrandis svirtinis mechanizmas, keičiantis sukamąjį judesį slenkamuoju arba atvirkščiai. atitikmenys: angl. crank and connecting rod assembly; crank mechanism vok. Kurbelgetriebe,… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

кривошипно-ползунный механизм — кривошипно ползунный механизм; отрасл. кривошипно шатунный механизм Рычажный четырехзвенный механизм, в состав которого входят кривошип и ползун … Политехнический терминологический толковый словарь

Механизм Ватта — (анимация). См. также Лемниската Бернулли Механизм Уатта (механизм Ватта, параллелограмм Ватта) изобретён Джеймсом Уаттом (19 января 1736  25 августа 1819) для придания поршню паровой машины прямолинейного движения. Этот ме … Википедия

Механизм Липкина — Посселье: звенья, показанные одним цветом, имеют одинаковую длину Механизм Липкина  Посселье (англ. Peaucellier–Lipkin linkage), изобретённый в 1864 году, был первым плоским механизмом, способным преобразовывать вращательное движение в… … Википедия

Механизм Саррюса — Механизм Саррюса. Чтобы посмотреть анимацию, кликните на картинку Механизм Саррюса (англ. Sarrus linkage), изобретённый … Википедия

Механизм Хойкена — (англ. Hoekens linkage)  это четырёхзвенный механизм, преобразующий вращательное движение в приближённо прямолинейное. Этот механизм является подобным механизму Чебышева. Соотношения между звеньями механизма показаны на иллюстрации.… … Википедия

Механизм — (греч. μηχανή mechané  машина)  это совокупность совершающих требуемые движения тел (обычно  деталей машин), подвижно связанных и соприкасающихся между собой. Механизмы служат для передачи и преобразования движения … Википедия

Механизм планшайба-стержни — Анимированное изображение планшайбы с валом и стержнями. Вращающийся вал и диск показаны серебристым цветом. Невращающийся диск показан золотистым цветом и шесть стержней приводятся от него в возвратно поступательное движение. Стержни могут быть… … Википедия

Механизм Чебышева — Механизм Чебышева  это механизм, преобразующий вращательное движение в приближённое к прямолинейному движение. Был изобретён в 19 м веке математиком Пафнутием Чебышевым, проводившим исследования теоретических проблем кинематических… … Википедия

Кривошипно-шатунный механизм

В одноцилиндровом четырехтактном двигателе на каждые два оборота коленчатого вала приходится четыре хода поршня, только один из которых — рабочий. Это приводит к неравномерной работе двигателя. Для небольших двигателей, таких? Как легкие лодочные моторы, двигатели мопедов, легких мотоциклов и т. д., такая неравномерность не представляет большой проблемы. Для более тяжелых автомобилей требуется большая мощность двигателя, а, следовательно, и больший рабочий объем цилиндра. В этом случае неравномерность работы двигателя становится более заметной. Вот почему на современных автомобилях применяются многоцилиндровые ДВС. Применение нескольких цилиндров, в которых рабочий ход происходит в разные моменты времени, дает возможность сгладить пульсации крутящего момента на вале двигателя. Большинство легковых автомобилей малого класса имеют четырехцилиндровые двигатели, хотя иногда используются двухцилиндровые и трехцилиндровые. На более тяжелых автомобилях, требующих большой мощности, наряду с четырехцилиндровыми, могут применяться пятицилиндровые и шестицилиндровые двигатели. Легковые автомобили высшего класса оборудуются восьмицилиндровыми и двенадцатицилиндровыми двигателями, хотя встречаются двигатели с десятью цилиндрами. Большинство грузовых автомобилей средней и большой грузоподъемности имеют двигатели с шестью и восемью цилиндрами.

Читайте так же:
В какой программе лучше рисовать блок схемы

КШМ 9.jpg

Неподвижные детали кривошипно-шатунного механизма

Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей.
К подвижным деталям КШМ относятся: поршень, поршневые кольца, поршневой палец, шатун, коленчатый вал, вкладыш подшипника и маховик. Неподвижными деталями КШМ являются: блок цилиндров, головка блока цилиндров и прокладка головки блока.
Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.

КШМ 10.jpg

Схемы расположения цилиндров в двигателях различной компоновки:
а — рядный четырехцилиндровый;
б — V-образный шестицилиндровый;
в — оппозитный четырехцилиндровый;
г — VR-двигатель шестицилиндровый;
д и е — W-образные 12-цилиндровые двигатели;
α — угол развала

Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными.
Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях — горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen, схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.

КШМ 11.jpg

Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал

Базовые понятия КШМ ДВС — это диаметр цилиндра и ход поршня. Диаметр цилиндра — это диаметр отверстия, под поршень, выполненного в блоке цилиндров .. Ход поршня — расстояние между ВМТ и НМТ. Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.

Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным. Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считается длинноходным. Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине.
При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя.
В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л.
Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.

Кривошипно-шатунный механизм двигателя внутреннего сгорания: устройство, назначение, как работает

Кривошипно-шатунный механизм (КШМ) представляет собой важный механизм автомобильного двигателя, который преобразовывает поступательные движения поршневой системы во вращательное движение коленчатого вала двигателя, от которого, в свою очередь, это движение передается на колеса автомобиля, что и приводит машину в движение.

Принцип работы кривошипно-шатунного механизма

Под давлением газов, которые образуются в цилиндрах двигателя при сгорании топливно-воздушной смеси, поршень совершает поступательное движение по направлению к коленчатому валу.

Важные детали механизма, а именно: поршень, шатун и вал помогают преобразовывать движения поступательного характера в движения вращательного, что в свою очередь запускает вращение колес автомобиля.

В обратном порядке взаимодействие вала и поршня выглядит следующим образом: вал при вращательном движении через детали механизма – вал, шатун и поршень, преобразовывает энергию в поступательное поршневое движение.

Читайте так же:
Как варить тиг сваркой

Как устроен кривошипно-шатунный механизм

Механизм состоит из деталей, как подвижных, так и неподвижных.

Детали подвижного типа:

  • поршень;
  • маслосъемное кольцо (1);
  • компрессионные кольца (2);
  • поршневой палец (3);
  • стопорное кольцо (4);
  • шатун;
  • крышка шатуна (5);
  • крепежный болт (6);
  • вкладыши (7);
  • втулка (8);
  • коленчатый вал;
  • шатунная шейка (9);
  • противовес (10);
  • коренная шейка (11);
  • маховик

Детали неподвижного типа:

  • блок и головка цилиндров;

Поршень с кольцами и пальцем

Поршень – это небольшая цилиндрическая деталь, изготовленная из алюминиевого сплава. Его основным назначением является преобразование давления выделяемых газов в поступательное движение, передаваемое в шатун. Возвратно-поступательное движение обеспечивается за счет гильзы.

Поршень состоит из юбки, головки и дна (днища). Дно может иметь разную форму (выпуклую, вогнутую или плоскую), в нем содержится камера сгорания. На головке расположены небольшие канавки для поршневых колец (маслосъемных и компрессионных).

Кольца компрессионного типа предотвращают возможное попадание газов в двигательный картер, а кольца малосъемного типа предназначены для удаления лишнего масла со стенок цилиндра.

Юбка оснащена специальными бобышками с отверстиями, для установления поршневого пальца, соединяющий поршень и шатун.

Шатун

Шатун – еще одна деталь КШМ, которая изготавливается из стали методом штамповки или ковки, оснащенная шарнирными соединениями. Шатун предназначен для передачи энергии движения от поршня к валу.

Шатун складывается из верхней, разборной нижней головки и стержня. Верхняя головка соединяется с поршневым пальцем. Нижнюю разборную головку можно соединять с шейкой вала с помощью крышек (шатунных).

Кривошип (колено)

К любому кривошипу (колено) крепится шатун поршня. Зачастую кривошип располагается от оси шеек в определенном радиусе, что определяет ход поршня. Именно эта деталь дала название кривошипно-шатунному механизму.

Коленчатый вал

Еще одна подвижная деталь механизма сложной конфигурации, изготовленная из чугуна или стали. Основным назначением вала является преобразование поступательного поршневого движения поршня во вращательный момент.

Коленчатый вал складывается из шеек (коренных, шатунных), щек (соединяющих шейки) и противовесов. Щеки создают равновесие при работе всего механизма. Внутри шейки и щеки оснащены небольшими отверстиями, через которые под давлением происходит подача масла.

Маховик

Маховик, как правило, установлен на конце вала. Изготавливается из чугуна. Маховик предназначен для повышения равномерного вращения вала для запуска двигателя с помощью стартера.

В настоящее время чаще применяются маховики двухмассового типа – два диска, которые достаточно плотно соединены между собой.

Блок цилиндров

Это неподвижная деталь КШМ, которая изготавливается из чугуна или алюминия. Блок предназначен для направления поршней, именно в них осуществляется весь рабочий процесс.

Блок цилиндров может быть оснащен рубашками охлаждения, постелями для подшипников (распределительного и коленчатого вала), точкой крепления.

Головка цилиндров

Эта деталь оснащена камерой сгорания, каналами (впускными и выпускными), отверстиями для свечей зажигания, втулками и седлами. Головка цилиндров изготавливается из алюминия.

Как и блок, головка также имеет рубашку охлаждения, которая соединяется с рубашкой цилиндра. А вот герметичность этого соединения обеспечивается специальная прокладка.

Закрывается головка небольшой штампованной крышкой, при этом между ними устанавливается резиновая прокладка, устойчивая к воздействию масел.

Поршень, гильза цилиндров и шатун образуют то, что автомобилисты обычно называют цилиндр. Двигатель может иметь от одного до 16, а иногда и больше цилиндров. Чем больше цилиндров, тем больше общий рабочий объем двигателя и, соответственно, тем больше его мощность. Но нужно понимать, что при этом одновременно с мощностью растет и расход топлива. Цилиндры в двигателе могут располагаться по различным компоновочным схемам:

  • рядная (оси всех цилиндров располагаются в одной плоскости)
  • V-образная компоновка (оси цилиндров располагаются под углом 60 или 120 градусов в двух плоскостях)
  • оппозитная компоновка (оси цилиндров располагаются под углом 180 градусов)
  • VR-компоновка (аналогично V-образной, но плоскости располагаются под небольшим углом относительно друг друга)
  • W-образная компоновка представляет собой совмещение на одном коленчатом валу двух VR-компоновок, расположенных V-образно со смещением относительно вертикали

От компоновочной схемы зависит балансировка двигателя, а так же его размер. Наилучшей балансировкой обладает оппозитный двигатель, однако он редко используется на автомобилях из-за конструктивных особенностей.

Так же отличным балансом обладает рядный шестицилиндровый двигатель, но его применение на современных автомобилях практически невозможно из-за его громоздкости. Наибольшее распространение получили V-образные и W-образные двигатели из-за наилучшего сочетания динамических характеристик и конструктивных особенностей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector