Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключение светодиода к сети 220 Вольт

Подключение светодиода к сети 220 Вольт

В декоративном освещении и прочих местах, где светодиод используется как источник света, принято подключать его через драйвер. Драйвер уже имеет необходимые параметры для бесперебойной и максимально эффективной работы светодиода. Он актуален в тех случаях, когда в цепи наличествует несколько мощных кристаллов или целый набор светодиодных лент.

Подключение светодиода напрямую к напряжению 220 В используется в том случае, когда LED будет выглядеть как слабенький индикатор – если в подключении участвуют один или несколько элементов. Для них покупка драйвера совершенно нецелесообразна. В данном материале описана разница подключения через драйвер и к сети 220 В напрямую, а также показаны и объяснены схемы подключения различных типов.

В чем заключается разница подключения

Как подключить светодиод к сети 220 В? Проблема изначально кроется в технических характеристиках LED. Его работа основана на пропускании сквозь кристаллы определенного тока, вследствие чего они светят. Драйвер призван контролировать подачу тока на кристалл, ограничивая ее тем количеством, которое необходимо конкретно для этих моделей подключаемых светодиодов.

Пример подключения драйвера для декоративной подсветки светодиодами

Пример подключения драйвера
для декоративной подсветки светодиодами

Ключевой особенностью драйвера является подача на светодиод постоянного тока, а не переменного, который протекает в обычной бытовой розетке. Переменный ток 220 В подает на кристаллы синусоподобное напряжение с частотой 50 Гц. Это означает, что его направление меняется 50 раз в секунду. При этом если включить светодиод, он будет светиться только при основной подаче тока и гаснуть при обратной. На схеме это выглядит так.

Зависимость свечения кристалла от направления переменного тока

Зависимость свечения кристалла
от направления переменного тока

Глядя на график, становится понятно, что LED не будет светить постоянно, а будет мигать с такой же частотой, как и сам ток – 50 раз в минуту. Для человеческого глаза такое мерцание не различимо, и он будет видеть обычный равномерный свет. Но это не значит, что подключение светодиода к сети выполнено правильно.

Светодиод способен пропускать ток только в одном направлении, обратные колебания приводят к разрушению его структуры и последующей деградации. Для того чтобы светодиод не вышел из строя, к нему необходимо применять защитные меры.

Способы подключения к переменному току

Номинал резистораНоминал резистора

Номинал резистораПростым и дешевым способом будет использование гасящего резистора, который включается в электрическую цепь, представляющую собой последовательное соединение светодиодов. Номинальной мощностью ограничительного резистора будет значение, которое рассчитывается по следующей формуле:

где: 0,75 – коэффициент надежности LED (теоретическое, конкретное узнавать у производителя);

Uпит – напряжение источника тока;

Uпад – напряжение, падающее на диоде и вызывающее свечение кристалла;

I – номинальный проходной ток.

При этом помните, что за напряжение источника тока следует принимать не 220 В, а амплитудный параметр 310 В. Это обязательно нужно учитывать для правильности выходных параметров при выполнении расчета.

Мощность резистораМощность резистора

После включения резистора в цепь появляется достаточно сильное сопротивление, которое сопровождается ощутимым выделением тепла – ведь падающее напряжение должно куда-то преобразовываться. Поэтому важным параметром при подборе резистора является его мощность, которая рассчитывается по формуле:

где: U – разность сетевого и падающего напряжений.

Подключение резистора, выполненное своими руками, сгладит резкую амплитуду переменного тока и позволит подключать светодиоды к сети 220 вольт. Но даже после его подключения все равно остается обратное напряжение такой же силы, поэтому для обеспечения безопасности кристалла выполняется еще несколько операций.

Подключение диода с высоким порогом обратного пробоя. Это самый простой и эффективный способ защитить LED от тока обратного направления. Смысл в том, что этот диод имеет колоссальное сопротивление на обратное направление, пропуская ток в одну сторону и не давая ему пройти в другую. На схеме это выглядит так:

Защита светодиодов от обратного напряжения диодом

Защита светодиодов от обратного напряжения диодом

Здесь не нужно выполнять расчет – обратное напряжение такого диода должно превышать указанные выше 310 В. При изменении направления тока все напряжение будет приложено только к нему. Практика показывает, что чем больше будет его сопротивление, тем надежнее он защитит LED. Оптимальный параметр приближается к 1 000 В.

Встречно-параллельное включение светодиода и обычного диода. В отличие от обратного диода, резистор гасит напряжение в обоих направлениях. Смысл данного способа заключается в том, чтобы обратную амплитуду направить сразу на установленный ранее резистор, который и заглушит его. Учтите, что для такой схемы ранее рассчитанные параметры резистора нужно как минимум удвоить и добавить маленький хвостик в 5–10% для амортизации перепадов напряжения.

Читайте так же:
Как подключить трехфазный электродвигатель в сеть 380в

Встречно-параллельное подключение светодиода и диода

Встречно-параллельное подключение светодиода и диода

Встречно-параллельное подключение светодиода и диодаВстречно-параллельное подключение двух одинаковых светодиодов к напряжению 220 В. Как подключить светодиоды к сети 220 В? Если подразумевается подключение их в количестве двух штук (иди любого другого четного количества), то можно сразу расположить светодиоды так, чтобы заменить и диод обратного напряжения, и обычный. Аналогично предыдущей схеме вместо маленького диода на обратное направление ставится второй светодиод. Таким образом, первый импульс придется на первый светодиод, а возвратная амплитуда вернется на гасящий резистор через второй. Для реализации такой схемы не забудьте подключить светодиод к сети, соблюдая обратное направление (это касается второго элемента). Разделение будет такое – половина в одну сторону, половина в другую.

Встречно-параллельное подключение двух светодиодов

Встречно-параллельное подключение двух светодиодов

Два последних способа очень экономичны в плане покупки и установки радиодеталей, однако имеют общий существенный минус – при двойном сопротивлении на резисторе образуется и двойное выделение тепла. Поэтому необходимо правильно рассчитать его мощность. Представим наиболее простые способы выполнить расчет. Предположим, что в наших схемах использовались резисторы с сопротивлением в 30 кОм, при переменном напряжении 220 В они выдают ток около 10 мА. Рассчитываем, сколько тепла образуется на элементе:

10×10×30 = 3 000 мВт или 3 Вт.

Из этого следует, что для нормальной работы резистора в цепи с двумя светодиодами его мощность должна приближаться к 4 Вт – этого запаса вполне достаточно для безопасной работы.

Возникает следующая проблема – увеличение количества запитанных светодиодов от сети в цепи даже до 3 штук ведет к колоссальным требованиям к резистору – его мощность уже должна приближаться к 40 Вт, что экономически и логически совсем не выгодно. Этим нюансом пренебрегать не надо – если мощности окажется недостаточно для выделения тепла такой силы, резистор очень быстро перегреется и сгорит, вызвав в сети опасное короткое замыкание и доставив много проблем.

Включение конденсатора в электрическую цепь. Такой вид нагрузки имеет большое преимущество перед резистором – его сопротивление реактивное, то есть на нем мощность не рассеивается. Ниже представлена наиболее частая схема подключения светодиодов от сети 220 В с конденсатором. Следует помнить, что при всех своих преимуществах конденсатор имеет одну существенную опасность для пользователя – после отключения подачи тока в сеть 220 В он продолжает хранить внутри остаточные заряды. Для их нейтрализации в цепь подключается резистор R1. Резистор R2 устанавливается для защиты цепи от резкого скачка напряжения через конденсатор. Также не забываем и об установке диода обратного напряжения VD1, который защищает LED от возвратной полярности.

Схема подключения светодиодов через конденсатор

Схема подключения светодиодов через конденсатор

Упомянем и о материале нагрузки. Он бывает двух видов – полярный и неполярный. Для нашей цепи в обязательном порядке устанавливаются только вольтовые неполярные варианты. Электролитные и танталовые устанавливать запрещено – обратное напряжение очень быстро разрушит их структуру, что приведет к выгоранию цепи и короткому замыканию. Его мощность аналогична резистору для этих целей – не менее 400 В.

Расчет емкости конденсатораРасчет емкости конденсатора

У конденсатора есть параметр, который перед подключением светодиодов к сети 220 вольт нужно рассчитывать – емкость. Эмпирическая формула приведена ниже:

где: U – все то же амплитудное напряжение переменного тока, 310 В;

I – ток, который проходит через установленный светодиод, мА;

Uд – падающее напряжение тока для образования свечения на кристалле.

Применение в быту

Чаще всего такие схемы встречаются в выключателях с подсветкой. Типичная схема правильного использования указана ниже:

Подключение светодиода в выключателе

Подключение светодиода в выключателе

Ввиду маленькой мощности световых устройств в них нет защищающих обратных диодов. Резистор установлен таким образом, чтобы ограничить прямой ток значением 1 мА. Такая схема подключения светодиода к сети 220 вольт не особо эффективна в плане яркости свечения, оно очень тусклое, но свою роль играет хорошо – в темной комнате выключатель видно. Здесь обратное напряжение при размыкании контактов цепи направлено на резистор, в качестве дополнительной нагрузки также выступает наличие светодиодной или любой другой лампочки, а также блока питания. Таким образом, светодиод защищен он обратного пробоя током.

Читайте так же:
Как выглядит зубило фото

Техника безопасности

Кратко о нюансах подключения, которое выполняется в большинстве домов – для обеспечения безопасности при работе с электрической цепью часто бывает мало выключить один только выключатель. Дело в том, что он, как правило, размыкает фазу, но при этом из-за отсутствия заземления на ноле остается остаточное напряжение. Если заземление неправильное, например, люди подключаются к батарее или водопроводу, есть риск попасть на напряжение между фазой и заземлением. Отключайте питание полностью на рубильнике или счетчике на входе в дом или квартиру, и сделайте уже правильное заземление, если у вас его нет.

Заключение

В создании такой цепи главный нюанс – правильный подбор параметров резистора и конденсатора. Переменный ток, который протекает в розетке, оказывает сильное разрушающее действие на элементы, неприспособленные к пропусканию через себя обратного тока. Грамотное ограничение амплитуды переменного тока с заданным амортизационным запасом и правильный расчет обезопасит цепь от выгорания и короткого замыкания, позволив ей работать долго и надежно.

Подключение светодиода к сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод — для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока — использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В — это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах — от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так — читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua — UL) / I , где Ua — амплитудное значение напряжения (310В), UL — падение напряжения на светодиодах, I — требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться «Калькулятором светодиодов».

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду — он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 — обратное напряжение 1000В, прямой ток 1А.

Второй вариант — включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Читайте так же:
Где применяют серый чугун

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети — не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua — UL) , где I — требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Оставшиеся детали — светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны — готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой — около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант — использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье «Схема драйвера для светодиода от сети 220В».

Есть еще один не совсем правильный, но достаточно простой и работающий способ — можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать — читайте в статье «Простой драйвер светодиода от сети 220В».

Несколько вариантов схем как подключить светодиод к 220 вольтам (для световой индикации)

Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.

Вариант №1 » последовательное включение светодиода и резистора.

простое подключение светодиода к 220 через резистор, схема нерабочая

Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 ком (24000 ом).

Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.

Читайте так же:
Как подключить телевизионную антенну

Вариант №2 » подключение светодиода с защитой от обратного напряжения.

схема включения светодиода к напряжению 220 В с диодной защитой от обратного напряжения

В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробиться светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

схема подключения индикаторного светодиода к 220 с защитой от перенапряжения

Эта схема похожа не предыдущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

подключение двух светодиодов к 220 вольтам с защитой от высокого обратного напряжения

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды защищены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Вариант №4 » лучшая схема с токоограничительным конденсатором, резистором и выпрямительным мостом.

лучшая схема подключения светодиода к напряжения 220 В

Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).

Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.

Читайте так же:
Как обозначают фазу и ноль в электрике

Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.

В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.

Видео по этой теме:

схема подключения неоновой лампочки для индикации

P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.

Как подключить светодиод к 12 вольтам и 220В

Для начала ответим на вопрос: «как подключить драйвера к светодиодам?». Подключение осуществляется с соблюдением полярности всех элементов цепи по следующим схемам:

  • Последовательно. Для питания цепи нам потребуется драйвер с такой же силой тока, как и у светодиодов. Мощность устройства зависит от суммарных показателей напряжения цепи. Например, для питания 6 диодов по 2V необходим драйвер мощностью 12V.
  • Параллельно. При параллельном подключении драйвер можно взять в два раза слабее, чем при последовательном, но сила тока должна быть в два раза выше.
  • Последовательно по два. Для питания цепи используется такой же драйвер, как и при параллельном соединении. Очевидный недостаток схемы ­– возможные проблемы с распределением тока в паре диодов при включении.

Общая схема сборки цепи

Алгоритм работы включает следующие этапы:

  • Вычисляем мощность электрической цепи.
  • Если цепь не заводская, то вычисляем мощность каждого диода и составляем схему подключения (с учетом резисторов, если подключаем к источнику напряжения).
  • Собираем цепь, учитывая полярность диодов.
  • Прикрепляем цепь к радиатору и источнику питания.
  • Включаем светодиоды в электрическую сеть, наблюдая за их работой.
  • Тестируем работу электроцепи, корректируя напряжение, измеряя теплопотери.
  • Прогреваем в течение получаса.

Рассчитать охлаждение для светодиодов малой мощности (1-5V) сложно, поэтому их рекомендуем покупать на специальной подложке, прикрепляемой к радиатору.

Как подключить светодиод к 220в?

Схема предполагает наличие стабилизирующего устройство (драйвер, блок питания) и последовательной схемы соединения частей цепи. При таком типе подключения ток распределяется равномерно, но выход из строя одного элемента отключает всю цепь.

Как подключить светодиод к 12 вольтам?

Схема с использованием 12-вольтного источника питания включает резисторы или низковольтные драйвера. Типичная схема подключения рассчитана на последовательное соединение 3 светодиодов.

Выключатели со светодиодом, как подключить правильно?

Диод подключается к электрической цепи параллельно с включателем и применением резистора. Для правильного подключения необходимо верно рассчитать силу сопротивления и мощность лампочки. В позиции «включено» ток по сети проходит мимо светодиода.

+7 (953) 822-00-13

620102, г. Екатеринбург ул. Благодатская, 76, корпус Е, 103 (офис) / 102 (склад)

©ReLED — светодиодное освещение, 2021

ООО «РЕЛЕД», ИНН 6671376323, ОГРН 1116671012314

Заказ обратного звонка

Спасибо! Ваша заявка отправлена.
Мы свяжемся с вами в ближайшее время

Произошла ошибка. Пожалуйста, попробуйте ещё раз или свяжитесь с нами по телефону или e-mail.

Сообщить о появлении

Спасибо! Ваша заявка отправлена.

Произошла ошибка. Пожалуйста, попробуйте ещё раз или свяжитесь с нами по телефону или e-mail.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector