Opori-osveshenia.ru

Опоры освещения
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Построение правильных многоугольников

Построение правильных многоугольников

Для решения задачи воспользуемся тем, что сторона шестиугольника равна радиусу описанной около него окружности, т.е. (смотри формулу для вычисления стороны правильного многоугольника), где — радиус окружности описанной около правильного многоугольника. Нам нужно построить правильный шестиугольник со стороной DC, поэтому с помощью циркуля измеряем отрезок DC и строим окружность радиуса DC, и отмечаем на ней произвольную точку А1, центр окружности обозначаем буквой О.

Затем не меняя раствора циркуля, построим на этой окружности точки А2, А3, А4, А5, А6, так, чтобы выполнялись равенства

А1А2 = А2А3 = А3А4 = А4А5 = А5А6 = DC (т.е. сначала строим окружность радиуса DC с центром в точке А1 (всю окружность строить необязательно, смотри выделенное красным), данная окружность пересечет окружность с центром О в точке А2, далее аналогично строим окружность радиуса DC с центром в точке А2, она пересечет окружность с центром О в точке А3 и т.д.).

Теперь соединяя последовательно построенные точки отрезками, получим искомый правильный шестиугольник А1А2А3А4А5А6.

Задача 2

Дан правильный />-угольник. Построить правильный 2 />-угольник.

Дано: правильный -угольник А1А2А3. Аn.

Построить: правильный 2-угольник.

Решение:

Пусть, например, нам дан шестиугольник А1А2А3А4А5А6, значит, построить нужно двенадцатиугольник.

Сначала опишем около данного шестиугольника А1А2А3А4А5А6 окружность. Для этого построим биссектрисы углов А1 и А2. Чтобы построить биссектрису угла А1, строим окружность произвольного радиуса с центром в точке А1 (полностью окружность строить необязательно, смотри выделенное красным цветом), данная окружность пересечет стороны А1А2 и А1А6 угла А1 в точках Е и К. Затем строим две окружности с центрами в точках Е и К радиуса ЕК (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом), данные окружности пересекутся в точке Р. Далее проводим луч А1Р, который и будет биссектрисой угла А1.

Аналогично строим биссектрису угла А2.

Точку пересечения биссектрис углов А1 и А2 обозначаем буквой О и строим окружность радиуса ОА1 с центром О (окружность описанная около А1А2А3А4А5А6).

Далее нужно каждую из дуг А1А2, А2А3, А3А4, А4А5, А5А6, А6А1 разделить пополам. Чтобы разделить дугу А1А2 пополам, построим серединный перпендикуляр к отрезку А1А2. Для этого строим две окружности с центрами в точках А1 и А2 радиуса А1А2 (полностью окружность строить необязательно, смотри выделенное красным цветом). Данные окружности пересекутся в двух точках, одну обозначим буквой М, а другая совпадет с точкой О, т.к. у шестиугольника сторона равна радиусу (с другими многоугольниками совпадения с точкой О не будет) . Затем проводим прямую МО, данная прямая пересечет дугу А1А2 в точке В1, которая и разделит дугу А1А2 пополам. Далее точку В1 соединяем с концами А1 и А2 дуги А1А2.

Аналогично находим точки В2, В3. Точки В4, В5, В6 в данном случае строить необязательно, они получаются автоматически при построении точек В1, В2, В3, т.к. шестиугольник симметричная фигура.

Мы выполняли построения на примере правильного шестиугольника, если мы имеем произвольный правильный -угольник, то все построения выполняются аналогично.

Применяя указанный способ, можно с помощью циркуля и линейки построить целый ряд правильных многоугольников, если построен один из них. Например, построив правильный треугольник и пользуясь результатом задачи 2, можно построить правильный шестиугольник, затем правильный двенадцатиугольник и вообще 2 k -угольник, где — любое целое число, больше двух.

Замечание

Не все правильные многоугольники можно построить с помощью циркуля и линейки. Доказано, например, что правильный семиугольник не может быть построен при помощи циркуля и линейки.

Урок по геометрии "Построение правильных многоугольников" (9 класс)

Емельянова Ирина Алексеевна

На уроке рассматриваются разные приемы построения правильных многоугольников. Рассматривается исторический материал и место правильных многоугольников в живой и неживой природе.

Скачать:

ВложениеРазмер
postroenie_pravilnyh_mnogougolnikov.docx138.32 КБ

Предварительный просмотр:

Урок-практикум по геометрии на тему:

«Решение задач на построение правильных многоугольников»

Дать представления о задачах на построение правильных многоугольников, рассмотреть наиболее простые задачи на построение и научить учащихся их решать. Привить интерес к таким задачам, обращая внимание учащихся на необычность и оригинальность их решения, а также точность и красоту геометрических фигур, получающихся в процессе построения. Для расширения кугозора дать представление о месте многоугольников в живой и неживой природе, использовании в архитектуре, быту и искусстве.

Тип урока: изучение нового материала

Вид урока: урок – практикум

Форма обучения : коллективная и индивидуальная

Приборы и материалы:

Циркуль, линейка, карандаш, ручка и альбомный лист.

Сегодня на уроке мы познакомимся с геометрическими задачами на построение. Вы уже имели дело с геометрическими построениями: проводили прямые, откладывали отрезки, равные данным, строили углы, треугольники и другие фигуры. При этом вы пользовались чертежными инструментами: масштабной линейкой, циркулем, транспортиром, чертежным угольником. (Видео 0.0-1.13)

В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов:

1) циркуля, с помощью которого можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку;

2) линейки без масштабных делений, которая позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки.

Сегодня на уроке вы научитесь решать наиболее простые задачи на построение. Они являются основой для решения более сложных геометрических задач на построение, которые вы будете решать в дальнейшем. (Видео 0.0-1.13)

Простейшими задачами на построение считаются следующие задачи:

1. Построение середины отрезка.

2. Построение угла, равного данному углу.

3. Построение биссектрисы угла.

4. Построение перпендикуляра к прямой, проходящего через точку, лежащую на этой прямой.

5. Построение перпендикуляра к прямой, проходящего через точку, не лежащую на этой прямой.

Задача 1. Построить серединный перпендикуляр к отрезку.

Задача 2. Рассчитать величину угла правильного треугольника и построить треугольник с заданной стороной с помощью транспортира и линейки. Величина угла: 180 0 : 3 = 60 0

Задача 3. Рассчитать величину угла правильного шестиугольника и построить его с заданной стороной с помощью транспортира и линейки.

Алгоритм № 1. (Слайд 2)

Для построения правильного n – угольника произведём расчёт величины его углов.

Так как сумма всех углов правильного n – угольника равна (n – 2)∙180º и все его углы равны, то угол правильного многоугольника будет вычисляться по формуле:

Вычислив величину угла правильного n – угольника и зная длину его стороны, мы можем построить при помощи транспортира и линейки любой правильный многоугольник.

Например: Построить правильный шестиугольник с заданной стороной а .

Построение выполняем последующему алгоритму.

1.Вычисляем по формуле угол правильного шестиугольника,

2.Проводим при помощи линейки прямую линию.

3.Откладываем при помощи циркуля на прямой отрезок длиной равной а.

4. Строим при помощи транспортира углы величиной 120º с вершинами на

концах отрезка а.

5. Откладываем при помощи циркуля на полученных лучах отрезки длинной равной а.

6. Строим при помощи транспортира углы величиной 120º с вершинами на

концах полученных отрезков.

7. Откладываем при помощи циркуля на полученных лучах отрезки длинной равной а.

8. Соединяем концы полученных отрезков.

Алгоритм построения правильного многоугольника можно изобразить

в следующей последовательности чертежей. (Слайд 3)

Полученный многоугольник является правильным шестиугольником. Аналогично можно построить любой правильный n – угольник.

Алгоритм № 2. (Слайд 4)

Этот алгоритм очень прост, поэтому особого внимания математики ему не уделяют.

Центральный угол окружности составляет 360º.

1. Делим 360º на n равных частей.

2. Проводим лучи до пересечения с окружностью.

3. Соединяем точки пересечения.

Полученный многоугольник является правильным n –угольником.

построения правильных многоугольников с помощью циркуля и линейки .

Следующий алгоритм построения правильных многоугольников основан на свойствах описанной окружности около правильного многоугольника и вписанной в правильный многоугольник.

Теорема 1. Около любого правильного многоугольника можно описать окружность, и притом только одну.

Теорема 2. В любой правильный многоугольник можно вписать окружность, и притом только одну.

Следствие 1. Окружность, вписанная в правильный многоугольник, касается

сторон многоугольника в их серединах.

Следствие 2. Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в этот многоугольник

Для построения правильных n – угольников при n › 4 обычно используется окружность, описанная около многоугольника.

Задача 1. Построить правильный шестиугольник, сторона которого равна данному отрезку. (Видео 5.02-6.05. Слайд 5)

Построить : правильный 6-угольник

Для решения задачи воспользуемся формулой а 6 = R

(Доказать по формуле: a = 2 R sin )

Пусть а – данный отрезок.

Алгоритм построения. (видео 5.02-6.05)

1.Построим окружность радиуса а.

2. Отметим на ней произвольную точку А 1 .

3. Не меняя раствора циркуля, построим на этой окружности точки А 2 , А 3 , А 4 , А 5 , А 6 так, чтобы выполнялись равенства

А 1 А 2 = А 2 А 3 = А 3 А 4 = А 4 А 5 = А 5 А 6

4.Соединим последовательно построенные точки отрезками, получим искомый правильный шестиугольник

А 1 А 2 А 3 А 4 А 5 А 6

Задача 4. Построить правильный треугольник

Алгоритм. Соединить через одну 3 точки на окружности. (Слайд 6-7)

Задача 5. Построить правильный четырехугольник. (видео 3.14-3.50)

Провести диаметр окружности. Провести к нему диаметр, перпендикулярный данному. Соединить четыре точки окружности .

Задача 6. Построить правильный 8-угольник

Построить серединные перпендикуляры к сторонам 4-угольника и соединить 8 точек окружности.

Задача 7 . Дан правильный n – угольник. Построить правильный

Решение. Пусть А 1 А 2 … А n — данный правильный n – угольник. Опишем около него окружность. Для этого построим биссектрисы углов А 1 и А 2 и обозначим буквой О точку их пересечения. Затем проведём окружность с центром О радиуса О А 1 .

Для решения задачи достаточно разделить дуги А 1 А 2 , А 2 А 3 , …, А n А 1 пополам и каждую из точек деления В 1 ,В 2 ,… ,В n соединить отрезками с концами соответствующей дуги. Для построения точек В 1 ,В 2 ,… ,В n можно воспользоваться серединными перпендикулярами к сторонам данного

n – угольника. По такому алгоритму построим правильный двенадцатиугольник А 1 В 1 А 2 В 2 А 3 В 3 А 4 В 4 А 5 В 5 А 6 В 6

Применяя указанный алгоритм, можно построить целый ряд правильных n – угольников, если построен один из них. Например, построив правильный шестиугольник, можно построить правильный двенадцатииугольник, построив правильный четырёхугольник, т. е. квадрат, можно построить правильный восьмиугольник, затем правильный шестнадцатиугольник и вообще правильный 2 К – угольник, где к – любое целое число.

Историческая справка и подведение итогов (видео 8.24-10.09)

Из истории построения правильных многоугольников

Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны.

Примерами правильных многоугольников являются равносторонний треугольник, квадрат, правильный шестиугольник и другие правильные многоугольники.

Построение правильного многоугольника с n сторонами оставалась проблемой для математиков вплоть до ХIХ века. Построение правильного многоугольника с n сторонами идентично разделению окружности на n равных частей, так как соединив между собой точки делящие окружность на части, можно получить искомый многоугольник.

Древнегреческий математик Архимед использовал правильные многоугольники для вычисления числа π. Он вычислял площади вписанных в окружность и описанных вокруг неё многоугольников, постепенно увеличивая число их сторон. Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решал задачу для

n = 3, 4, 5, 15. Древнегреческие математики умели строить правильные многоугольники.

Средневековая математика почти никак не продвинулась в вопросе построения правильных многоугольников.

Лишь в1796 году Карл Фридрих Гаусс доказал, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить с помощью циркуля и линейки. На сегодняшний день известны следующие числа Ферма: 3, 5, 17, 257, 65537. Вопрос о наличии или отсутствия других таких чисел остаётся открытым.Интересно, что поиски простых чисел Ферма на современных компьютерах не дали результатов, все проверенные числа оказывались составными. Поскольку число 7 не является простым числом Ферма, то построить правильный семиугольник с помощью циркуля и линейки невозможно, как невозможно построить одиннадцатиугольник, тринадцати- и четырнадцатиугольники, невозможно построить правильный девятиугольник. Пока известна возможность построения лишь 31 правильного многоугольника с нечётным числом вершин.

В 1894 году была поставлена точка в деле построения правильных многоугольников, когда были построены правильные 17-257-и 65537-угольника.

Для расширения кугозора дать представление о месте многоугольников в живой и неживой природе, использовании в архитектуре, быту и искусстве.

Техническое черчение

Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вер­шины через одну, то получится равносторонний треугольник.

Для построения треугольника (фиг. 61, б) намечаем на диаметре вершину—точку 1 и проводим диаметральную линию 1—4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окруж­ностью в точках 3 и 2. Полученные точки будут двумя другими вер­шинами искомого треугольника.

Построение квадрата, вписанного в окружность. Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пере­секаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные сто­роны квадрата 4—1 и 3—2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1—2 и 4—3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра (фиг. 62, б). Намечаем на концах двух взаимно перпендикулярных диа­метров точки А, В и С и из них радиусом у описываем дуги до вза­имного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные пря­мые, отмеченные на фигуре сплошными линиями. Точки их пересече­ния с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник (фиг. 63), про­изводим следующие построения.

Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точ­ках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вер­шины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую.

Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB.

Получим точку 1—вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведён­ными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиу­сом, равным диаметру окружности D, описываем дугу до пересечения с про­должением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, прово­дим из полюса F через чётные деления вертикального диаметра лучи, пересече­ние которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем после­довательно между собой. Семиугольник может быть построен путём проведе­ния лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоуголь­ников с любым числом сторон.

Деление окружности на любое число равных частей можно произ­водить также, пользуясь данными табл. 2, в которой приведены коэф­фициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй—коэффициенты.

Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Шестиугольник описанный около окружности построение

Шестиугольник описанный около окружности построениеТему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. Шестиугольник описанный около окружности построениечертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Шестиугольник описанный около окружности построениеВокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Шестиугольник описанный около окружности построениеЦентр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Шестиугольник описанный около окружности построениеУгол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

От теории к практике

Шестиугольник описанный около окружности построениеСвойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Презентация была опубликована 5 лет назад пользователемГригорий Оськин

Похожие презентации

Презентация на тему: " а) Для построения правильного шестиугольника можно воспользоваться тем, что а 6 = R. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую." — Транскрипт:

2 а) Для построения правильного шестиугольника можно воспользоваться тем, что а 6 = R. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. (таким образом окружность разделиться на 6 равных частей). 4. Соединив последовательно данные точки, получим правильный шестиугольник. б) Для построения правильного шестиугольника можно воспользоваться другим способом (см. учебник стр.206, п. 117).

3 Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. (таким образом окружность разделиться на 6 равных частей). 4. Соединив последовательно через одну данные точки, получим правильный треугольник. Для построения правильного треугольника воспользуемся тем же алгоритмом, что и для построения правильного шестиугольника, только получив 6 точек на окружности, соединим их через одну.

4 Построение. 1. Строим ω(О; R). О 4. Соединив последовательно точки пересечения прямых с окружностью, получим правильный треугольник. Для построения правильного четырехугольника следует провести две перпендикулярные прямые, проходящие через центр окружности. Соединив последовательно точки пересечения прямых с окружностью, получим правильный четырехугольник (квадрат). 2. Проведем произвольную прямую, проходящую через центр окружности. 3. Проведем прямую, перпендикулярную данной и проходящую через центр окружности.

5 Построение. О 3. Соединив последовательно точки на окружности получим правильный восьмиугольник. Для построения правильного восьмиугольника сначала строим правильный четырехугольник ( по описанному алгоритму), а затем проводим две прямые через середины противолежащих сторон. При этом окружность окажется разделенной на 8 раваных частей. Соединив последовательно точки на окружности, получим правильный восьмиугольник. 1. Строим правильный четырехугольник, вписанный в окружность. 2. Проводим две прямые через середины сторон квадрата (вершины квадрата и точки пересечения прямых с окружностью делят окружность на 8 равных частей).

6 Рассмотренные способы построения правильных многоугольников дают возможность построить многоугольники, вписанные в окружность. Чтобы построить многоугольник, описанный около окружности, пользуются теми же способами, только на последнем этапе не соединяют полученные точки на окружности, а проводят через них касательные. Построим правильный шестиугольник, описанный около окружности. Построение. 1. Строим ω(О; R). О 2. Строим произвольную точку, принадлежащую окружности. 3. Из данной точки раствором циркуля равным R на окружности откладываем последовательно один за другим отрезки. 4. Через каждую полученную точку на окружности проводим касательные. Получим правильный шестиугольник.

Правильный описанный треугольник строят следующим образом (рисунок 38). Из центра заданной окружности радиуса R1 проводят окружность радиусом R2 = 2R1 и делят ее на три равные части. Точки деления А, В, С являются вершинами правильного треугольника, описанного около окружности радиуса R1.

Шестиугольник описанный около окружности построение

Правильный описанный четырехугольник (квадрат) можно построить с помощью циркуля и линейки (рисунок 39). В заданной окружности проводят два взаимно перпендикулярных диаметра. Приняв точки пересечения диаметров с окружностью за центры, радиусом окружности R описывают дуги до взаимного их пересечения в точках А, В, С,D. Точки A, B, C, D и являются вершинами квадрата, описанного около данной окружности.

Шестиугольник описанный около окружности построение

Для построения правильного описанного шестиугольника необходимо вначале построить вершины описанного квадрата указанным выше способом (рисунок 40, а). Одновременно с определением вершин квадрата заданную окружность радиуса R делят на шесть равных частей в точках 1, 2, 3, 4, 5, 6 и проводят вертикальные стороны квадрата. Проведя через точки деления окружности 2–5 и 3–6 прямые до пересечения их с вертикальными сторонами квадрата (рисунок 40, б), получают вершины А, В, D, Е описанного правильного шестиугольника.

Шестиугольник описанный около окружности построение

Остальные вершины C и F определяют с помощью дуги окружности радиуса OA, которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
3 СОПРЯЖЕНИЯ

Дата добавления: 2014-11-06 ; Просмотров: 4403 ; Нарушение авторских прав? ;

голоса
Рейтинг статьи
Читайте так же:
Выключатель legrand как подключить одноклавишный с подсветкой
Ссылка на основную публикацию
Adblock
detector