Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема транзисторного эквивалента тиристора без ложных срабатываний и повышенной устойчивостью к импульсным помехам

Схема транзисторного эквивалента тиристора без ложных срабатываний
и повышенной устойчивостью к импульсным помехам.

Тиристор – это полупроводниковый силовой электронный ключ.
Тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Под воздействием управляющего сигнала он скачкообразно переводится в проводящее состояние (открывается), замыкая нагрузочную цепь, после чего остаётся открытым и после снятия управляющего сигнала.
Для того чтобы тиристор выключился, необходимо создать специальные условия, а именно — обеспечить падение прямого тока в цепи нагрузки до нулевого значения. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определённого минимума (примерно 0,7 вольта).
В области коммутации мегаваттных мощностей тиристор по-прежнему не имеет конкурентов — ему там самое оно. А вот маломощные тиристоры практически ушли со сцены, уступив место полевым и биполярным транзисторам.

Простейший эквивалент тиристора состоит из двух транзисторов с разными типами проводимостей Рис.1(а) и представляет собой защёлку, переходящую в проводящее состояние при подаче на затвор управляющего тока.
Казалось бы всё хорошо и просто, однако подобным устройствам (да и самим тиристорам, кстати, тоже) присущ весьма неприятный недостаток — включение тиристора (или эквивалента) при возникновении импульсной помехи в цепи нагрузки даже при нулевом токе затвора.

Хорошая статья, посвящённая мерам повышения устойчивости транзисторных эквивалентов к подобным импульсным помехам, была опубликована Словенским инженером Marian-ом Stofka, а с её полным переводом можно ознакомиться на страницах журнала РАДИОЛОЦМАН, декабрь 2013, или на странице https://www.rlocman.ru/shem/schematics.html?di=152269.

Не в обиду авторам, приведу основные выдержки из данного материала.

«Тиристор представляет собой четырехслойное полупроводниковое устройство, транзисторный эквивалент которого можно представить схемой, изображенной на Рисунке 1а.

Рис. 1 Упрощенный транзисторный эквивалент тиристора (а).
Схема с хорошо контролируемыми и вычисляемыми токами затвора и удержания (б).
Усовершенствованная схема надежно защищает от нежелательного включения при
скачке анодного напряжения (в).

Устройство остается в выключенном состоянии до тех пор, пока через управляющий электрод 1 (далее называемый «затвор») не будет пропущен положительный импульс тока. После этого четырехслойная структура между анодом и катодом включается, и ток управляющего электрода становится больше не нужным. Для включения тиристора здесь может с равным успехом использоваться и база Q2, однако в монолитных тиристорах обычно используется только один управляющий электрод возле катодной области.

Более реалистичная транзисторная модель, показанная на Рисунке 1б, содержит резисторы между переходами база-эмиттер обоих транзисторов. В результате исключается возможность нежелательного включения токами утечек Q1 и Q2, и ток затвора имеет определенное значение, равное:

Одним из общих ограничений тиристоров является скорость нарастания анодного напряжения, которая, в случае превышения определенного порога, становится причиной включения тиристора даже при нулевом токе затвора. Такое напряжение возникает на стороне коммутируемой индуктивной нагрузки в то время, когда ток анода, стремясь к нулю, падает ниже уровня удержания. При этом накопленная в индуктивности энергия стремится резко поднять напряжение на аноде. Напряжение с большой крутизной нарастания возникает также при коммутации резистивных нагрузок комбинацией из двух (как минимум) тиристоров, соединенных подобно аналоговому мультиплексору, когда включение одного из тиристоров вызывает резкое повышение анодного напряжения на другом тиристоре.

Для схемы на Рисунке 1б критическим значением скорости нарастания коммутируемого напряжения будет:
(1)
где
VBE0 ≈ 0.7 В — типичное напряжение, при котором открывается кремниевый транзистор,
CCB01 и CCB02 – емкости коллектор-база транзисторов Q1 и Q2.

В связи с тем, что емкости этих конденсаторов уменьшаются с ростом напряжения коллектор-эмиттер, в уравнении (1) следует использовать максимальные значения емкостей. Для транзисторов, использованных в схеме на Рисунке 2, емкости можно оценить величиной CCB01 + CCB02 < 20 пФ. При RB1 = RB2 = 6.8 кОм это дает SVcrit ≈ 5 В/мкс, что значительно меньше типичной для монолитных тиристоров скорости, достигающей SVcrit ≈ 100 В/мкс. Ситуацию могло бы исправить снижение сопротивлений резисторов RB1 и RB2, однако за это пришлось бы заплатить потерей чувствительности затвора. (Изображенная на Рисунке 1б схема может быть сделана настолько чувствительной, что для ее включения будет достаточно тока порядка 100 мкА – одной десятой от тока управления, типичного для маломощных монолитных тиристоров).

Рис.2 После добавления двух керамических конденсаторов емкостью 1 нФ схема перестает реагировать на скачки ∆V анодного напряжения с уровнями до 10 В.

Однако есть способ, показанный на Рисунке 1в, который позволяет увеличить критическую скорость нарастания напряжения, сохранив низкий отпирающий ток затвора. Если параллельно переходам база-эмиттер NPN и PNP транзисторов включить по конденсатору C, критическую скорость нарастания, теоретически, можно сделать бесконечной. Величина емкости C равна:
(2)
Для простоты здесь принято, что нарастание анодного напряжения во время скачка на величину ∆V происходит по линейному закону. Практический предел определяется максимально допустимым током базы используемых транзисторов:
(3)
Допустив, что IBmax = 200 мА, из уравнения (3) мы получим вполне правдоподобное значение SVcrit ≈ 100 кВ/мкс.

Читайте так же:
Какое содержание углерода обеспечивает хорошую свариваемость

В результате экспериментов для схемы на Рисунке 2 был выбран PNP транзистор 2N4036, отличающийся самым уверенным и надежным переключением. Его максимальный базовый ток равен 500 мА, а максимальный ток коллектора – 1 А. При скачкообразных изменениях напряжения на аноде изображенного на Рисунке 2 дискретного тиристора (∆V = 9 В за 30 нс, или 300 В/мкс) не произошло ни одного включения.»

Внимательно посмотрев на схему легко заметить, что во включённом состоянии приведённого эквивалента тиристора, ток нагрузки протекает не только через коллекторно-эмиттерную цепь верхнего полупроводника, но и через переход база-эмиттер нижнего, поэтому при выборе транзистора Q1 следует послеживать за таким его параметром, как максимально допустимый ток базы.
И поскольку не каждый производитель нас радует публикацией данного параметра, исходить следует из того, что максимальный ток базы, как правило, находится в диапазоне 0,2-0,5 от значения величины предельного тока коллектора.

ШИМ + тиристор на постоянном токе

Всем двс. Нужно сделать регулировку по току для зарядного/блока питания. Я решил использовать ne555 в связке с тиристором. В proteus работает, только он не закрывается. Если поставить на вторичку вместо диода, то думаю заработает и для заряда пойдет, но там же помехи будут не хилые. Как быть? Нужно, чтобы при отсутствии упр. импульсов был заперт. Сейчас хоть закрутись потенциометром, частота меняется и ничего больше. Полевые транзисторы уже предлагали, но нету, а напряжение может быть под 30в и больше если все получится.

А схема где, которая в протеусе работает?

Схема должна питаться выпрямленным напряжением БЕЗ фильтра (конденсатора), иначе тиристор не закроется.

Транзистор поставить параллельно тиристору и в момент, когда надо, закрыть тиристор, кратковременно открыть транзистор, после снять с него напряжение. Тиристор закрыт.

Ну а смысл тогда весь теряется, не?

Это единственный способ поправить вашу схему для работы на постоянном напряжении, при условии, что тиристор успеет открыться и получится его закрыть на вашей частоте.
Смысл чего?
Частота какая?
Напряжение с чего берем?
Вы пишите о помехах, помехи кому от вашего девайса?
Заряжать/питать что собрались?
Вы пишите 30В и более, максимальное напряжение питания 555 номинал 15В, максимум 18…

Да, похоже на то. Далее по пунктам.
1. Смысл применения тиристора.
2. Частота, она изменяется, т. к. нужна регулировка.
3. Напряжение на таймер — отдельно со стабилизатора или как минимум с выпрямителя нормального после транса.
4, 5. Помехи — нагрузке, мало ли что приспичит подключить (магнитолы/жесткие диски например, как довольно требовательное к качеству питания, простейшее — лампочка конечно) . Заряжать акумы различные, автомобильные разные в т. ч.
6. Я ж не буду 15-18 и тем более 30 в загонять на 555 сразу, не совсем идиот (можно поспорить конечно но не в данном случае).

Теперь понятно, Вы хотите универсальное, из говна и палок, к сожалению, так не бывает.
Тиристоры не для этих задач.
Тиристоры для фазоимпульсного управления, частота постоянна, а меняется начальный угол открытия. Для шима тиристоры не годятся. Для автомобильного аккумулятора сделайте, по той схеме, как вам дали. Рекомендуется вам подтянуть матчасть, тогда таких тем не будет.
Интересно, что рисует протеус, когда вы рвете ток через индуктивность?

Уже понял, что тиристор не подходит сюда, если только как вы говорите. Схему все равно свою городить итоговую, что-нибудь скомпануем.

Симисторы: от простого к сложному

Симисторы: от простого к сложномуВ 1963 году у многочисленного семейства тринисторов появился еще один «родственник» — симистор. Чем же он отличается от своих «собратьев» — тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт — ток в цепи отсутствует (дверь закрыта — прохода нет), прибор открыт — в цепи возникает электрический ток (дверь отворилась — входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается «от себя», но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.

Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.

Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р- n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.

Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).

Тринисторный аналог симистора

Тринисторный аналог симистора

Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.

В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — «подтолкнем» его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.

Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).

Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).

Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.

Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает «тиристор симметричный».

Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.

Симисторы: от простого к сложномуДля практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.

А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно.

Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, «командующего» лампами, в таком приборе выполняет полупроводниковый симистор.

Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.

Принципиальная схема регулятора

Рис. 5. Принципиальная схема регулятора

Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.

Временные диаграммы напряжения: а - в сети; б - на управляющем электроде симистора, в - на нагрузке

Рис. 6. Временные диаграммы напряжения: а — в сети; б — на управляющем электроде симистора, в — на нагрузке.

Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)

Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.

Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым яркость свечения лампы или температуру нагревательного элемента.

В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре полупроводниковых диода серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.

Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.

Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.

Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.

Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.

ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!

Что такое симистор (триак) и как он работает. Проверка мультиметром

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать - в таком варианте управляющих вывода два

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Проверяем мультиметром

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector