Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Решения / /-> Управление вентиляцией по уровню CO2

Решения / Управление вентиляцией по уровню CO2

Управление вентиляцией по уровню CO2

Поглащая при вдохе кислород (02) и выдыхая углекислый газ (СО2), пары воды (H2O) и примеси других газов являющимися продуктами процесса обмена веществ в организме.

Допустимые значения СО2

Для измерения концентрации углекислого газа в воздухе применяют единицы измерения ppm (parts per million или частиц СО2 на миллион частиц воздуха 1000 ppm = 0,1% содержания СО2.)

Влияние уровня CO2 на человека

В чистом атмосферном воздухе концентрация углекислого газа составляет 350-400 ppm (0,035-0,04%). И это значение является оптимальным для жизни человека. Допустимым же является значение ниже 1000 ppm.

Сколько СО2 выделяет человек?

Один человек в течении часа при выдыхает от 18 до 25 л углекислого газа. Потребляя при этом 20-30 л кислорода. Если человек находится в комнате 20 м2 с высотой потолков 2,5 м и плохой вентиляции, то уровень СО2 будет расти на 580 ppm каждый час. Поэтому даже идеально проветренная перед этим комната за час станет источником головной боли, а через 8 часов концентрация в ней СО2 приблизится в критическому уровню. Если же в помещении будет больше одного человека то скорость выработки СО2 увеличится.

Зависимость от интенсивности работы

Содержание СО2 вразных помещениях:
В доме без вентиляции в разных комнатах значениеможеь быть от 850 до 1200 ppm
Утром в спальне до 2100 ppm
Вофисе уровень может достигать 800-2000 ppm

Избыток СО2 приводит к негативным изменениям в крови.

  • Углекислый газ даже в невысоких концентрациях негативно влияет на клеточную мембрану человека.
  • Cнижается рН крови, вызывая ацидиоз
  • Как следствие состояние перевозбуждения и умеренная гипертензия.
  • По мере возрастания степени ацидоза появляется сонливость и состояние беспокойства
  • Следующим этапом становится снижение физической активности, и аппатия
  • При сне человек не высыпается и просыпается уже уставшим
  • При концентрации выше 800 ррм наблюдается рост количества маркеров окислительного стрессы в ДНК
  • Появляется синдром больного здания, у проживающих в них людей в виде проблем с дыханием, затем — болей в суставах, бессонницы.
  • При концентрации выше 1000 ppm интелектуальная деятельность становится невозможной

Источники проблеммы

Наши здания в большинстве своем спроектированны как системы с естественной вентиляцией. При которой свежий воздух должен поступать через щели между окнами и дверьми, а воздух содержащий вредные газы должен удаляться через вытяжку. Однако наше стремление к ситуации когда «не дует», с установкой пластиковых окон и дверей с уплотнительными резинками нарушает эту систему. Поэтому система вентиляции начинает работать крайне не эффективно или перестаёт работать вообще.

Другой причиной может быть неправильно спроектированная или неправильно управляемая система. Система основанная только на энергосбережении неспособна создать комфортные условия

Решение проблемы приточная вентиляция управляемая по уровню CO2

Для измерения уровня СО2 используется датчик WGCO2. При помощи датчиков температуры замеряется температура воздуха окружающей среды и температура в помещении. Полученное значения обрабатываются модулем сценария «Двухпозиционный регулятор». На основании этих показаний вычисляется необходимая скорость потока воздуха. И включается соответствующее число ступеней вентиляции модулем WG485SW6.

Какой уровень СО2 у вас?

Содержание

Оборудование

Wire Geo Smart Contoller v3WGSC-3 является гибко программируемым центром управления распределённой сети устройств24 999 руб.
Климатический датчик 1-wireКлиматический датчик 3-в-1 (температура, влажность, освещенность) для шины 1-Wire399 руб.
Датчик СО 485Датчик СО 485399 руб.
Силовой релейный модуль на 6 выходовСиловой релейный модуль на 6 выходов1 799 руб.
Читайте так же:
Чем приклеить пластик к дереву

Модули сценария

Модуль сценария Двухпозиционный регулятор (hyst_reg)Модуль сценария Двухпозиционный регулятор (hyst_reg)199 руб.

Запрос информации

Наш менеджер свяжется с вами в течение рабочего дня. Спасибо!

Запрос информации

Для получения информации или приобретения данного решения введите, пожалуйста, свои контакты:

Автоматическое газовое пожаротушение — углекислота CO2

Двуокись углерода – один из старейших газовых огнетушащих веществ, используемых в автоматическом газовом пожаротушении. Представляет собой предельную степень окисления углерода, в силу чего является химически инертным веществом, не поддерживающим горения.

Диоксид углерода относится к классу инертных газов, для которых основным механизмом тушения считается разбавление. Поэтому рекомендуемые огнетушащие концентрации для диоксида углерода достаточно высоки. Однако, он (так же как и хладон 23) выгодно отличается от других газов тем, что он хранится в модулях в сжиженном состоянии. Жидкость СО2 намного плотнее газа, поэтому коэффициент заполнения для углекислоты СО2 существенно выше, чем для сжатых газов азота и аргона. Это приводит к заметной экономии баллонов в системах автоматического газового пожаротушения.

К тому же давление в баллонах с СО2 значительно ниже (в 3 -5 раз), чем в баллонах с другими инертными газами (азот, аргон, инерген) с баллонами 200 и 300 атмосфер, что снижает опасность при эксплуатации.

СО2 хранится в баллонах при давлении порядка 55 – 58 атмосфер.

Преимущества углекислоты СО2

— высокая эффективность тушения;

— применяется как для объемного тушения, так и для тушения локально по объему;

— применяется в хранилищах ценностей, в кладовых и хранилищах банков, в фондохранилищах и запасниках архивов и библиотек, покрасочных, для тушения различных технологических установок, емкостей хранения масел, установок под напряжением и т.д.;

— обладает хорошими диэлектрическими свойствами, применяется для защиты электрооборудования до 10000 Вольт;

— разрешено применять только для тушения помещений, в которых предварительно эвакуированы люди;

— остаточная концентрация кислорода после выпуска ГОТВ составляет порядка 12 %, что вызывает асфиксию (удушье) человека;

— представляет собой газ тяжелее воздуха, без вкуса, цвета и запаха;

— время выпуска 60 секунд;

— требует устройства контроля массы ГОТВ, обеспечивается постоянный контроль работоспособности установки;

— не требует газа-вытеснителя;

— низкая стоимость газового огнетушащего вещества и возможность заправки практически в любом регионе РФ.

Диоксид углерода не вызывает коррозии металлов, не реагирует с большинством материалов даже при высоких температурах. Его можно применять для автоматического газового пожаротушения в помещениях с материальными ценностями, документами, электроникой, точными механизмами. Концентрация углекислоты СО2 в атмосфере составляет порядка 0,04 %. Углекислый газ даже в небольших концентрациях очень токсичен.

Признаки отравления углекислотой СО2

Учащение и углубление дыхания наблюдаются при концентрации его в воздухе, равной 2—3 %. В больших количествах углекислый газ вызывает наркотическое действие и смерть.

Признаки отравления углекислотой СО2 (кашель, головная боль, учащенное сердцебиение, повышенное артериальное давление) появляются, если концентрация ее в воздухе составляет 4—5 %.

Читайте так же:
Принцип работы карбюратора бензопил

При значениях концентрации порядка 10% наблюдаются потеря сознания и летальный исход, поэтому при эксплуатации установок автоматического газового пожаротушения с СО2 особенно важно выполнять технику безопасности.

Углекислый газ и его физические свойства — объем, плотность, масса, формула

Молекула CO2

Молекула углекислого газа

Углекислый газ представляет собой бесцветный газ, без запаха,который относится к неорганическим веществам. Другие названия вещества — диоксид углерода, двуокись углерода, углекислота, диоксид карбона, угольный ангидрид. Молекула углекислого газа состоит из атома углерода, соединенного двойной ковалентной связью с двумя атомами кислорода.

электронная формула CO2

Электронная формула диоксида углерода

Химическая формула — CO2. Молярная масса углекислоты равна 44,01 г/моль. Расстояние от центра центрального атома углерода до каждого центра атома кислорода равно 116,3 пикометров (10 в -12 степени).

Структурная формула молекулы CO2

Структурная формула молекулы

CO2 при низких температурах и нормальном давлении замерзает и кристаллизуется в белую массу, похожую на снег — «Сухой лед». При превышении температуры (-78.5 °C) начинается его испарение (кипение), минуя фазу жидкостного состояния.

В жидкостное состояние газ преобразуется при высоком давлении (73.8 атм.) и средних температурах (+31.1 °C). Это критическая точка углекислоты. Подъем температуры или давления после нее приводит к образованию сверхкритической жидкости (Отсутствует различие между жидкостной и газовой фазой). При снижении температуры до -56.6 °C и давления до 5.2 атм. он остается в жидкостной фазе. Это предельные значения, при изменении которых углекислота переходит в газообразную или твердую фазу (тройная точка состояний).

Фазовые изменения углекислоты

CO2 не ядовит, но при превышении концентрации в десятки раз, он оказывает удушающее воздействие на живые организмы и вызывает кисловатый вкус и запах (реакция CO2 со слюной и слизистыми образует угольную кислоту).

Двуокись углерода превышает по плотности кислород на 37 процентов и равна 1,96 кг/м3 при нормальных условиях среды (температура — 273 К, давление — 101 кПа). Этим физическим свойством объясняется потеря сознания у животных в «Собачьей пещере», расположенной рядом с городом Поццуоли, Италия. Диоксид углерода скапливался из трещин кратеров в нижних слоях пещеры, тем самым достигая больших концентраций. Туристов приводили туда обычно с собакой, которая в пещере с течением времени теряла сознание. Человек обычно не подвергался воздействию CO2, так как дышал воздухом с более высокого уровня.

Плотность углекислоты, воздуха и кислорода.

Плотность углекислоты, воздуха и кислорода.

Объем углекислого газа в окружающем нас воздухе, составляет 0,04% (406 ppm – 406 частиц на миллион).

Углекислый газ, он же углекислота, он же двуокись углерода…

Углекислый газ бесцветный газ с едва ощутимым запахом не ядовит, тяжелее воздуха. Углекислый газ широко распространен в природе. Растворяется в воде, образуя угольную кислоту Н2CO3, придает ей кислый вкус. В воздухе содержится около 0,03% углекислого газа. Плотность в 1,524 раза больше плотности воздуха и равна 0,001976 г/см 3 (при нулевой температуре и давлении 101,3 кПа). Потенциал ионизации 14,3В. Химическая формула – CO2. Формула углекислого газа

Содержание

Как получилось так, что у данного газа столько много терминов неизвестно, но в сварочном производстве, согласно ГОСТ 2601, используется термин «углекислый газ». В «Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением» принят термин «углекислота», а в ГОСТ 8050 — «двуокись углерода». Поэтому далее мы будем оперировать всеми этими понятиями.

Читайте так же:
Лампа светодиодная аналог люминесцентной 36 вт

Плотность двуокиси углерода зависит от давления, температуры и агрегатного состояния, в котором она находится. При атмосферном давлении и температуре -78,5°С углекислый газ, минуя жидкое состояние, превращается в белую снегообразную массу «сухой лед».

Под давлением 528 кПа и при температуре -56,6°С углекислота может находиться во всех трех состояниях (так называемая тройная точка).

Двуокись углерода термически устойчива, диссоциирует на окись углерода и кислород только при температуре выше 2000°С.

Жидкая двуокись углерода

Удельная масса жидкой двуокиси углерода значительно изменяется с температурой, поэтому количество углекислоты определяют и продают по массе. Растворимость воды в жидкой двуокиси углерода в интервале температур 5,8-22,9°С не более 0,05%.

Жидкая двуокись углерода превращается в газ при подводе к ней теплоты.

Впервые жидкую двуокись углерода получили в 1823 г. Гемфри Дэви (Humphry Davy) и Майкл Фарадей (Michael Faraday).

Сухой лед

При чрезмерно быстром отборе газа, понижении давления в баллоне и недостаточном подводе теплоты углекислота охлаждается, скорость ее испарения снижается и при достижении «тройной точки» она превращается в сухой лед, который забивает отверстие в понижающем редукторе, и дальнейший отбор газа прекращается. При нагреве сухой лед непосредственно превращается в углекислый газ, минуя жидкое состояние. Для испарения сухого льда необходимо подвести значительно больше теплоты, чем для испарения жидкой двуокиси углерода — поэтому если в баллоне образовался сухой лед, то испаряется он медленно.

История открытия углекислого газа

Углекислый газ – это первый газ, который был описан как дискретное вещество. В семнадцатом веке, фламандский химик Ян Баптист ван Гельмонт (Jan Baptist van Helmont) заметил, что после сжигания угля в закрытом сосуде масса пепла была намного меньше массы сжигаемого угля. Он объяснял это тем, что уголь трансформируется в невидимую массу, которую он назвал «газ».

Свойства углекислого газа были изучены намного позже в 1750г. шотландским физиком Джозефом Блэком (Joseph Black).

Он обнаружил, что известняк (карбонат кальция CaCO3) при нагреве или взаимодействии с кислотами, выделяет газ, который он назвал «связанный воздух». Оказалось, что «связанный воздух» плотнее воздуха и не поддерживает горение.

Пропуская «связанный воздух» т.е. углекислый газ CO2 через водный раствор извести Ca(OH)2 на дно осаждается карбонат кальция CaCO3.

Способы получения углекислого газа

В статье «Как получить углекислый газ» рассказано все в мельчайших подробностях, здесь лишь скажем, что основными способами получения являются:

  • из известняка;
  • из газов при брожении спирта;
  • из газов котельных;
  • из газов производств химической отрасли.

Применение углекислого газа

Двуокись углерода чаще всего применяют:

  • для создания защитной среды при сварке полуавтоматом;
  • в производстве газированных напитков;
  • охлаждение, замораживание и хранения пищевых продуктов;
  • для систем пожаротушения;
  • очистка сухим льдом от загрязнений поверхности изделий.

Применение углекислоты для сварки

Плотность углекислого газа достаточно высока, что позволяет обеспечивать защиту реакционного пространства дуги от соприкосновения с газами воздуха и предупреждает азотирование металла шва при относительно небольших расходах углекислоты в струе. Низкий потенциал ионизации и теплопроводность способствуют образованию горячей зоны в центре столба дуги и как следствие более глубокое проплавление и меньшую ширину шва. Углекислый газ является активным газом, т.е. в процессе сварки он взаимодействует с металлом шва и оказывает на металл сварочной ванны окисляющее, а также науглероживающее действие.

Читайте так же:
Как заточить пилу ножовку

Молекула углекислого газа CO2, попадая в зону сварочной дуги распадается на атомарный кислород О и угарный газ СО. В результате происходит выгорание легирующих элементов металла сварочной ванны и окисление основного металла (возникает окалина, шлак и дым). Реакция окисления расплавленного металла сварного шва имеет следующий вид:

Fe + CO2 = FeO + CO

Ранее препятствием для применения углекислоты в качестве защитной среды являлось образование большого количества дефектов в сварных швах (преимущественно пор). Поры при сварке возникают в результате кипения затвердевающего металла сварочной ванны от выделения окиси углерода (СО) из-за недостаточной его раскисленности. При этом поверхность сварного шва сильно окислена и имеет большое количество шлака ввиду окисляющей атмосферы внутри сварочной дуги. Помимо неудовлетворительного эстетического вида, при необходимости дальнейшего нанесения защитного покрытия потребуется дополнительная операция зачистки поверхности.

При высоких температурах углекислый газ диссоциирует с образованием весьма активного свободного, одноатомного кислорода:

Окисление металла шва выделяющимся при сварке из углекислого газа свободным кислородом нейтрализуется содержанием дополнительного количества легирующих элементов с большим сродством к кислороду, чаще всего кремнием и марганцем (сверх того количества, которое требуется для легирования металла шва) или вводимыми в зону сварки флюсами (сварка порошковой проволокой).

Как двуокись, так и окись углерода практически не растворимы в твердом и расплавленном металле. Свободный активный кислород окисляет элементы, присутствующие в сварочной ванне, в зависимости от их сродства к кислороду и концентрации по уравнению:

Мэ + O = МэO, где Мэ — металл (марганец, алюминий или др.).

Кроме того, и сам углекислый газ реагирует с этими элементами. В результате этих реакций при сварке в углекислоте наблюдается значительное выгорание алюминия, титана и циркония, и менее интенсивное — кремния, марганца, хрома, ванадия и др.

Особенно энергично окисление примесей происходит при полуавтоматической сварке. Это связано с тем, что при сварке плавящимся электродом взаимодействие расплавленного металла с газом происходит при пребывании капли на конце электрода и в сварочной ванне, а при сварке вольфрамовым электродом — только в ванне. Как известно, взаимодействие газа с металлом в дуговом промежутке происходит значительно интенсивнее вследствие высокой температуры и большей поверхности контактирования металла с газом. Для компенсации выгорания легирующих элементов в сварном шве, необходимо применять сварочную проволоку с повышенным содержанием раскислителей (кремния и марганца).

Уже давно известна зависимость, чем больше сила сварочного тока, тем больше размер капель расплавленного металла. В свою очередь увеличение размера капель электродного металла увеличивает разбрызгивание.

В настоящее время ввиду большого разбрызгивания металла сварочной ванны при сварке в углекислоте все чаще применяют сварочные смеси с аргоном. Производители сварочного оборудования не остались в стороне от данной проблемы и предусматривают специальный режим на сварочных полуавтоматах, при котором уменьшается эффект разбрызгивания. Еще один путь решения данного вопроса – это использование специальных спреев или жидкостей, которые не позволяют прикипать брызгам к металлу свариваемой детали. В любом случае применение любого из данных методов с лихвой окупит затраты времени и расходных материалов на удаление брызг путем механической зачистки.

Читайте так же:
Масло для поршневых компрессоров remeza

При сварке тонких деталей применением оптимальных режимов сварки возможно добиться короткозамкнутого переноса электродного металла и тем самым получить минимальное разбрызгивание. Например, при использовании сварочной проволоки Ø 1 мм, силе сварочного тока 150 А и напряжения дуги 16-23 В происходит перенос металла небольшими каплями за счет поверхностного натяжения.

Для MAG сварки толстостенных конструкций целесообразно применение проволоки большого диаметра и, следовательно увеличение силы сварочного тока, увеличение разбрызгивания, что ведет к уменьшению скорости наплавки электродного металла. Для уменьшения разбрызгивания уменьшают скорость подачи сварочной проволоки. Поэтому применение чистой углекислоты оказывает негативное влияние на производительность сварки и качества сварного шва. Углекислоту в качестве защитного газа рационально применять при сварке порошковой проволокой (FCAW) углеродистых сталей поскольку обеспечивается короткозамкнутый перенос и хорошее качество сварного шва.

При выборе защитного газа стоит учитывать не только его стоимость, но и влияние потерь на разбрызгивание, последующую зачистку и общую трудоемкость процесса.

Вредность и опасность углекислого газа

Двуокись углерода нетоксична и невзрывоопасна. При концентрациях более 5% (92 г/м 3 ) углекислый газ оказывает вредное влияние на здоровье человека, так как он тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья. Помещения, где производится сварка с использованием углекислоты, должны быть оборудованы общеобменной приточно-вытяжной вентиляцией. Предельно допустимая концентрация углекислого газа в воздухе рабочей зоны 9,2 г/м 3 (0,5%).

Хранение и транспортировка углекислого газа

Углекислый газ поставляется по ГОСТ 8050. Для получения качественных швов используют газообразную и сжиженную двуокись углерода высшего и первого сортов.

Углекислоту транспортируют и хранят в стальных баллонах по ГОСТ 949 или цистернах большой емкости в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов через рампы.

В верхней части баллона вместе с газообразной углекислотой скапливается воздух. Вода, как более тяжелая, чем жидкая двуокись углерода, собирается в нижней части баллона.

Для снижения влажности углекислого газа рекомендуется установить баллон вентилем вниз и после отстаивания в течение 10. 15 мин осторожно открыть вентиль и выпустить из баллона влагу. Перед сваркой необходимо из нормально установленного баллона выпустить небольшое количество газа, чтобы удалить попавший в баллон воздух. Часть влаги задерживается в углекислоте в виде водяных паров, ухудшая при сварке качество шва.

При выпуске газа из баллона вследствие эффекта дросселирования и поглощения теплоты при испарении жидкой двуокиси углерода газ значительно охлаждается. При интенсивном отборе газа возможна закупорка редуктора замерзшей влагой, содержащейся в углекислоте, а также сухим льдом. Во избежание этого при отборе углекислого газа перед редуктором устанавливают подогреватель газа. Окончательное удаление влаги после редуктора производится специальным осушителем, наполненным стеклянной ватой и хлористым кальцием, силикогелием, медным купоросом или другими поглотителями влаги.

Баллон окрашен в черный цвет, с надписью желтыми буквами «УГЛЕКИСЛОТА».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector