Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тиристорные регуляторы напряжения

Тиристорные регуляторы напряжения

С амплитуднофазовым управлением
В регуляторе, схема которого показана на рис. 1, использованы два тринистора, открывающиеся один в положительный, а другой — в отрицательный полуперноды сетевого напряжения. Действующее напряжение на нагрузке Rн регулируют переменным резистором R3.

Рисунок 1 — Тиристорный регулятор напряжения

Регулятор работает следующим образом. В начале положительного полупериода (плюс на верхнем по схеме проводе) тринисторы закрыты. По мере увеличения сетевого напряжения конденсатор. С1 заряжается через резисторы R2 и R3. Увеличение напряжения на конденсаторе отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R2 и R3 и емкости конденсатора С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога открывания тринистора Д1. Когда тринистор откроется, через нагрузку Rн потечет ток, определяемый суммарным сопротивлением открытого тринистора и Rн. Тринистор Д1 остается открытым до конца полупериода. Подбором резистора R1 устанавливают желаемые пределы регулирования. При указанных на схеме номиналах резисторов и конденсаторов напряжение на нагрузке можно изменять в пределах 40- 220 В.

В течение отрицательного полупериода аналогично работает тринистор Д4. Однако, конденсатор С2, частично заряженный в течение положительного полупериода (через резисторы R4 и R5 и диод Д6), должен перезаряжаться, а значит и время задержки включения тринистора должно быть большим. Чем дольше был закрыт тринистор Д1 в течение положительного полупериода, тем большее напряжение будет на конденсаторе С2 к началу отрицательного и тем дольше будет закрыт тринистор Д4.

Синфазность работы тринисторов зависит от правильного подбора номиналов элементов R4, R5, С2. Мощность нагрузки может быть любой в пределах от 50 до 1000 Вт.

И.ЧУШАНОК г. Гродно

С фазоимпульсным управлением
Регулятор, схема которого показана на рис. 2, управляется автоматически сигналом Uynp. В регуляторе использованы два тиристора — тринистор Д5 и динистор Д7. Тринистор открывается импульсами, которые формируются цепочкой, состоящей из динистора Д7 и конденсатора С1. В начале каждого полупериода тринистор и динистор закрыты и конденсатор С1 заряжается током коллектора транзистора Т1. Когда напряжение на конденсаторе достигнет порога открывания динистора, он откроется и конденсатор быстро разрядится через резистор R2 и первичную обмотку трансформатора Тр1. Импульс тока со вторичной обмотки трансформатора откроет тринистор. При этом управляющее устройство будет обесточено (так как падение напряжения на открытом тринисторе очень мало), динистор закроется. По окончании полупериода триннстор выключится и с началом следующего полупериода начнется новый цикл работы регулятора.

Рисунок 2 — Тиристорный регулятор напряжения с фазоимпульсным управлением

Время задержки импульса, открывающего тринистор, относительно начала полупериода определяется скоростью заряда конденсатора С1, которая пропорциональна току коллектора транзистора Т1. Изменяя управляющее напряжение Uynp, можно управлять этим током и, в конечном итоге, регулировать напряжение на нагрузке. Источником сигнала Uynp может быть полосовой фильтр (с выпрямителем) цветомузыкальнои установки, программное устройство. В системах автоматического регулирования в качестве Uупр используют напряжение обратной связи.

Резистор R5 необходимо подобрать таким, чтобы при Uynp=0 тринистор открывался в каждый полупериод в момент времени, близкий к окончанию полупериода.

Для того, чтобы перейти на ручное регулирование, достаточно заменить резистор R5 последовательной цепочкой из переменного резистора и постоянного сопротивлением 10- 12 кОм.

Напряжение стабилизации стабилитрона Д6 должно быть на 5-10 В больше максимального напряжения включения динистора.

Транзистор Т1. может быть любым из серий МП21, МП25, МП26. Динистор можно применить типов КН102Б, Д227А, Д227Б, Д228А, Д228Б. Резистор R1 составлен из двух мощностью по 2 Вт.

Импульсный трансформатор Тр1 намотан на кольцевом сердечнике, имеющем размеры 26Х18Х4 мм, из пермаллоя 79НМА (или такого же сечения из феррита М2000НМ1). Обмотка I содержит 70 витков, а обмотка II — 50 витков провода ПЭВ-2 0,33 мм. Межобмоточная изоляция должна выдерживать напряжение, близкое к сетевому.

Вместо динистора в регуляторе можно использовать транзистор, работающий в лавинном режиме. О работе транзисторов, в этом режиме подробно рассказывалось в "Радио", 1974, № 5, С. 38-41. Схема одного из таких регуляторов показана на рис. 3.

Рисунок 3 — Транзисторный регулятор напряжения

По принципу работы регулятор с транзистором, работающим в лавинном режиме, не отличается от предыдущего. Используемый транзистор типа ГТ311И имеет напряжение лавинного пробоя около 30 В (при сопротивлении резистора R3 равном 1 кОм). В случае применения других транзисторов — номиналы элементов R4, R5, С1 потребуется изменить.

Читайте так же:
Для чего предназначены монтерские лазы

В регуляторе (рис. 3) могут быть использованы и другие транзисторы, в том числе и структуры р-п-р, например П416. В этом случае нужно у транзистора Т1 (см. рис. 3) поменять местами выводы эмиттера и коллектора. Резистор R3 во всех случаях должен быть включен между базой и эмиттером. Напряжение на нагрузке регулируют переменным резистором R4.

Инж. Е. ФУРМАНСКИЙ Москва

С аналогом однопереходного транзистора
В регуляторе, схема которого показана на рис. 4, применен фазоимпульсный метод управления тринистором. В управляющем устройстве регулятора использован транзисторный аналог однопереходного транзистора (двухбазового диода). О работе однопереходных транзисторов можно прочитать в "Радио", 1972, № 7, с. 56.

Рисунок 4 — Тиристорный регулятор напряжения

Силовая цепь регулятора построена так же, как у регулятора, опубликованного в "Радио", 1972, № 9, с. 55. При разомкнутых контактах выключателя В’2 действующее значение напряжения на нагрузке можно изменять в пределах от нескольких вольт до 110 В, а при замкнутых — от 110 до 220 В.

По принципу работы управляющее устройство описываемого регулятора не отличается от устройств на динисторе или лавинном транзисторе (рис. 2 и 3). Мощность, подводимую к нагрузке, регулируют переменным резистором R5.

Тринистор ДЗ и диод Д1 установлены на общем радиаторе площадью 50-80 см2. Резистор R1 составлен из двух резисторов мощностью 2 Вт.

Инж. В. ПОПОВИЧ г. Ижевск.

На симисторе
Описываемый регулятор построен по схеме фазоимпульсного регулирования с использованием симистора (симметричного тирнстора). Схема регулятора показана на рис. 5. В управляющем устройстве применен транзисторный аналог однопереходного транзистора n-типа.

Рисунок 5 — Регулятор напряжения на симисторе

При включении регулятора (выключателем В1) транзисторы Т1 ч Т2 закрыты и конденсатор С1 начинает заряжаться через резистор R4 (с помощью которого регулируют мощность, выделяемую на нагрузке Rн). Заряд продолжается до тех пор, пока напряжение на конденсаторе не превысит порог открывания транзистора Т1. В этот момент транзисторы открываются и переходят в режим насыщения. Конденсатор быстро разряжается через них на первичную обмотку импульсного трансформатора Тр1. Импульс тока со вторичной обмотки открывает симистор Д5. Порог открывания транзисторов определяется сопротивлениями резисторов делителя R2R3.

Импульсный трансформатор Тр1 намотан на кольце из феррита М2000НМ1-15 типоразмера К20х 12х6. Обмотка I содержит 50 витков, а II — 30 витков провода ПЭЛШО 0,25 мм. Конденсатор С1 — МБМ с рабочим напряжением 160 В.

Максимально допустимый ток нагрузки регулятора 5 А. Пределы регулирования напряжения от нескольких вольт до 215 В.

Инж. В. ПОНОМАРЕНКО. инж. В. ФРОЛОВ г. Воронеж

C улучшенной регулировочной характеристикой
В тиристорных регуляторах с фазоимпульсным управлением напряжение на конденсаторе RС-цепи во время его заряда увеличивается по экспоненциальному закону. При синусоидальной форме сетевого напряжения регулировочная характеристика, выражающая зависимость напряжения на нагрузке от сопротивления переменного резистора, оказывается резко нелинейной, что затрудняет плавную регулировку напряжения на нагрузке.

Рисунок 6 — Тиристорный регулятор напряжения

Тиристорный регулятор, схема которого показана на рис. 6, в значительной степени свободен от этого недостатка. В регуляторе использован однопереходный транзистор. Улучшение линейности регулировочной характеристики достигается тем, что конденсатор С1 заряжается от напряжения сети (через резистор R4) и одновременно от источника постоянного стабилизированного напряжения (через делитель R5R6 и диод Д6>. Изменяя резистором R6 уровень постоянного напряжения, можно управлять моментом открывания тринистора и, следовательно, напряжением на нагрузке. Диод Д6 исключает возможность разряда конденсатора через резистор R6.

Сопротивление резистора R4 выбирают таким, чтобы при замкнутом накоротко резисторе R6 напряжение на нагрузке было минимальным. Тогда при крайнем нижнем (по схеме) положении движка резистора R6 напряжение на нагрузке будет максимальным.

Со стабилизацией выходного напряжения
Особенностью описываемого регулятора является способность стабилизировать напряжение на нагрузке при изменении напряжения питающей сети. Управляющее устройство построено на однопереходном транзисторе по схеме фазоимпульсного регулирования (см. рис. 7).

Рисунок 7 — Тиристорный регулятор напряжения со стабилизацией выходного напряжения

Регулятор мощности на полевом транзисторе схема

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

Читайте так же:
Автокефалии украинской церкви что это

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке — в момент перехода сетевого напряжения через ноль). Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется. Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т.е. открыванием и закрыванием ключа.

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно. Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов — около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.3 транзисторный ключ открыт, и ток протекает через нагрузку. При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод — наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.3 — низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока — 8 А, максимальное напряжение между стоком и истоком — 500 В, сопротивление канала в открытом состоянии — 0,85 Ом, рассеиваемая мощность — 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80. Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра). Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

1. Колдунов А Транзисторы MOSFET. — Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов — М. СОЛОН-Р 2001

Регулятор мощности на MOSFETах

Регуляторы мощности переменного тока с фазоимпульсным управлением получили широкое распространение как в устройствах промышленной автоматики, так и в радиолюбительских конструкциях. Регулирующим элементом таких устройств является триодный тиристор, момент (угол) открывания которого регулируется подачей импульса или уровня напряжения на управляющий электрод,

а закрывание происходит в момент уменьшения тока, протекающего через тиристор, до нуля (при активной нагрузке — в момент перехода сетевого напряжения через ноль). Такое управление называется неполным, поскольку можно регулировать только угол открывания тиристора, а момент закрывания не регулируется. Разработанные в последние годы мощные полевые транзисторы с изолированным затвором (MOSFET) позволяют построить несложный ключ для коммутации переменного тока с полным управлением, т.е. открыванием и закрыванием ключа.

Схема регулятора мощности представлена на рис.1. Силовой ключ выполнен на транзисторах VT1, VT2, включенных встречно-последовательно. Наличие в каждом транзисторе внутреннего защитного диода, включенного параллельно каналу в обратной полярности (анодом к истоку, катодом к стоку), позволяет обеспечивать протекание тока в нагрузке при положительных и отрицательных полупериодах сетевого напряжения.

На трех логических элементах микросхемы DD1 выполнен генератор импульсов с регулируемой скважностью. Частота импульсов — около 2 кГц (значительно выше частоты сетевого напряжения). При наличии высокого уровня на выходе инвертора DD1.3 транзисторный ключ открыт, и ток протекает через нагрузку. При этом в положительный полупериод ток протекает через открытый канал транзистора VT1 и защитный диод транзистора VT2, а в отрицательный полупериод — наоборот, через защитный диод транзистора VT1 и открытый канал транзистора VT2. Если же на выходе DD1.3 — низкий уровень, то оба транзистора закрыты, и нагрузка обесточена. Временные диаграммы работы регулятора показаны на рис.2. Очевидно, что изменение скважности импульсов позволяет изменять мощность нагрузки от нуля до максимального значения, соответствующего полному напряжению сети.

Читайте так же:
Электрическая схема подключения лампочки и выключателя

Питание микросхемы DD1 производится от однополупериодного выпрямителя с параметрическим стабилизатором, собранным на элементах R2 VD3, VD4, С2 Следует обратить внимание, что стабилизатора напряжения соединен с истоками полевых транзисторов и с общим проводом микросхемы, поэтому напряжение на затворы транзисторов подается относительно их истоков

Преимущество данного способа регулирования мощности перед фазоимпульсным состоит в том, что коммутация нагрузки происходит со значительно большей частотой, чем в регуляторах на тиристорах, это позволяет регулировать мощность для малоинерционных нагрузок.

Указанные на схеме полевые транзисторы IRF840 имеют следующие параметры: ток стока — 8 А, максимальное напряжение между стоком и истоком — 500 В, сопротивление канала в открытом состоянии — 0,85 Ом, рассеиваемая мощность — 125 Вт. Эти транзисторы можно заменить на IRF740, IRFP450, IRFP460, IRFPC50, IRFPC60, IRFP350, IRFP360 BUZ80. Перед установкой в устройство следует убедиться, что транзистор имеет защитный диод (это легко сделать с помощью омметра). Максимальная мощность нагрузки определяется предельным током открытого транзистора, при этом мощность, выделяющаяся на открытом канале, не должна превышать предельно допустимую Частота генератора в случае необходимости может быть изменена подбором емкости С1.

1. Колдунов А Транзисторы MOSFET. — Радиомир, 2004, N4 С 26

2 Семенов Б.Ю Силовая электроника для любителеи и профессионалов — М. СОЛОН-Р 2001

В сетевых регуляторах мощности в основном применяют фазоимпульсное управление, когда момент открывания полупроводникового ключа (тиристора, симистора) задерживается относительно момента перехода сетевого напряжения через ноль, а закрывание происходит, когда ток через прибор становится меньше тока удержания. Особенность регулятора мощности, рассмотренного в этой статье, в том, что силовые ключи на MOSFET-транзисторах открываются при переходе сетевого напряжения через ноль, а закрываются после формирования временной задержки 555-м таймером.

С появлением мощных полевых высоковольтных транзисторов с изолированным затвором (MOSFET) появилась возможность разрабатывать схемы регуляторов с применением их в качестве полупроводниковых ключей. Одна из таких конструкций описана в [1]. Но в этой схеме не применяется фазоимпульсное управление.

В конструкции, предложенной в [2], рассмотрен сетевой регулятор на мощном триаке типа ВТ136-600Е с фазоимпульсным управлением. При сопоставлении этих двух схем возникла мысль взять самое лучшее из рассматриваемых конструкций и создать новую на мощных полевых транзисторах с фазоимпульсным управлением на 555-м таймере. В результате была разработана схема, показанная на рис.1.

Схема управления ключами /Т2 и /ТЗ типа IRF840 взята из [2], только 555-й таймер в этой схеме обеспечивает не задержку включения, как в [2], а формирование времени включенного со­стояния полупроводниковых ключей VТ2 и VТЗ. Длительность включённого состояния транзисто­ров можно определить по формуле:

Диоды VD7 и VD8 — это двухсторонний диодный ограничитель напряжения на затворах полевых транзисторов VT2, VТЗ. Питание таймера DА2 ор­ганизованно так, как предложено в статье [3], с по­мощью ограничителя на стабилитроне VD10 и ре­зисторах R12, R1З и выпрямителя VD9, С5.

Конструкция и детали

В предлагаемой схеме необходимо использо­вать заведомо исправные радиоэлементы. По­стоянные резисторы типа МЛТ, не менее указанной на схеме мощностью. Переменный резистор типа СПЗ-4аМ. Элементы, обведенные на схеме пунк­тирной линией, относятся к схеме формирования импульса при переходе сетевого напряжения че­рез ноль. Схема выполнена на SMD-элементах ти­поразмера 1206, исключая оптрон DA1 и диоды мо­ста VD1-VD4, но вместо КД102Б в этих позициях можно использовать SMD-диоды типа GS1K.

Детали формирования импульса при переходе сетевого напряжения через ноль установлены на плате из одностороннего фольгированного стекло­текстолита размерами 36×36 мм (фото 1). Оптрон запаян в отверстия с обратной стороны этой платы.

Чертеж печатной платы формирователя и рас­положение деталей на ней показано на рис.2.

Читайте так же:
Какая пропорция масла и бензина для бензопилы

Остальные элементы, исключая мощные транзи­сторы VТ2, VТЗ и элементы R14, НL1,VD11, разме­щены на второй плате из одностороннего фольги­рованного стеклотекстолита размерами 66×36 мм (фото 2).

Чертеж этой платы показан на рис.3, а расположение деталей на ней — на рис.4.

Конденсаторы С2 и СЗ типа К73-17 или К73-9. Электролитический конденсатор С5 импортный, например, фирмы НIТАNО. Диоды VD7, VD8 мож­но заменить отечественными типа КД522Б. Светодиод может быть любого цвета свечения, как им­портный, так и отечественный. Он устанавливается в отверстие на лицевой панели конструкции.

Полевые транзисторы можно применить типа КП707В или иные, импортные, с характеристика­ми, соответствующими применяемой нагрузке. Элементы R14 и VD11 монтируются непосред­ственно на выводах розетки устройства.

Внутри корпуса установлена общая плата из стеклотекстолита размерами 80×110 мм. На пла­те имеются отверстия для крепления радиатора. Радиатор использован от устройства регулировки температуры РТ-3. Размеры радиатора 70×40 мм. Радиатор имеет 8 ребер высотой 20 мм. На ради­аторе через изоляционные прокладки из слюды закреплены транзисторы VТ2, VТЗ. Выводы тран­зисторов соединены с платой (фото 3) проводом МГТФ. Силовые цепи выполнены двойным прово­дом этого типа. Плата формирования импульса при переходе сети через ноль смонтирована с обрат­ной стороны общей платы, напротив радиатора. Плата управления транзисторами установлена на втулки над переменным резистором R8. Монтаж внутри корпуса также выполнен проводом МГТФ. Вся конструкция расположена в корпусе устрой­ства регулировки температуры РТ-3.

Налаживание

При наличии осциллографа, контролируя на­пряжение на выводе 3 таймера, необходимо про­верить длительность импульса, при вращении руч­ки резистора R8. Длительность должна меняться в пределах от 2 мс до 9,8 мс, но ни в коем случае она не должна превышать 10 мс, что может нарушить правильность запуска схемы. Времязадающие ре­зисторы R8, R9 и конденсаторы С2, СЗ имеют раз­брос параметров. Поэтому при налаживании воз­никнет необходимость подбора R9, С2 и СЗ.

Все пайки и замены элементов необходимо производить только при извлеченной вилки сете­вого шнура из розетки бытовой сети. В противном случае, можно получить поражение электрическим током, так как элементы конструкции находятся под потенциалом сети.

При отсутствии осциллографа настрой­ку схемы можно провести, включив вместо нагрузки лампу накаливания мощностью 40… 100 Вт, контролируя накал нити нака­ла. При минимальном напряжении нить на­кала светит еле заметным темно-красным цветом. При полностью выведенной ручке регуляторе вправо лампа накаливания должна светить в полный накал. Впрочем, при желании, можно сузить диапазон ре­гулировки. Работа этого регулятора прове­рялась совместно с электроплиткой мощ­ностью 1 кВт.

Регулятор мощности на микроконтроллере

Достоинствами этой конструкции является: простота самостоятельного изготовления, дешевизна и лёгкая управляемость. Минусами можно считать то, что нормальная работа схемы происходит только только с нагрузками до 150-200 Ватт, при более мощной нагрузке возникает гул и генерируются радиопомехи.

При первом включении схеме на сегментном индикаторе горит цифра 0. Включение и отключение осуществляется одномоментным нажатием и удержанием двух кнопок-микропереключателей. Регулировка больше-меньше – каждым нажатием по отдельности. Если не нажимать ни на один из тумблеров, то после последнего нажатия через два часа регулятор отключится самостоятельно, индикатор до тех пор будет моргать на ступени последнего рабочего уровня потребляемой мощности.

В момент отключения устройства от сети запоминается последний уровень выдаваемой мощности, который будет автоматически задан при очередном включении. Регулировка осуществляется в диапазоне от 0 до 9 и далее от А до F. То есть всего имеется 16 ступеней регулировки.

Радиатор на фото выше достаточно большой, конструкция позволяет поставить вариант и по меньше, но другого у меня не было. При первом включении устройства у меня на дисплее моргал 0, на нажатие кнопок схема не реагировала. Заменив конденсатора по питанию на номинал 1000 мкФ,проблема исчезла.

Печатная плата в формате Sprint Layout и прошивка микроконтроллера размещены в одном архиве по ссылке выше.

Схема используется для плавного регулирования мощности в нагрузке. В основу способа управления положен метод фазового управления симистором. Сущность его заключается в пропуске части полупериода переменного сетевого напряжения. Ток поступающий в нагрузку пропорционален интегралу полученного сигнала. Основа конструкции микроконтроллер PIC16F1823.

Устройство поддерживает работу с активной (лампа накаливания, нагреватель) и индуктивной нагрузкой. Тактирование микроконтроллера осуществляется от внутреннего генератора. Сигнал синхронизации с сетью поступает с выпрямительного моста на вход внутреннего компаратора микроконтроллера через фильтр на R10, C5, R9, R8, C3. Опорное напряжение компаратора поступает с внутреннего ЦАП микроконтроллера и равно около 0,6 В, которое задается при конфигурации МК. Для устранения влияния емкости C6 на синхронизацию применяется диод D6. Индикация выполнена на E30561 с общим катодом.

Читайте так же:
Кабельные скобы для степлера

Конструкция регулятора мощности

Конструктивно устройство собрано на двух печатных платах. На одной распологаются индикатор и управляющие кнопки, а на другой МК, блок питания и симистор. Соединение плат выполнено проводом МГТФ.

С радиатором для симистора (HS-135-38), как на рисунке максимальная мощность нагрузки около 500 Вт. Соответственно под этот радиатор и сделано посадочное место на печатной плате.

Прошивка для МК выполнена в среде MPLAB на языке С для компилятора HI-TECH PICC 9.83. Скачать печатные платы, прошивку и проект MPLAB вы можете по ссылке выше.

Регулирование конструкции происходит с помощью симистора типа BT138. Управление которым осуществляется посредством МК. Цифровой LED дисплей показывает на сколько процентов в текущий момент времени открыт симистор. Логическая часть схемы получает питание от блок питания, основа которого стабилизатор напряжения DA1 7805.

Регуляторы

Управление электромотором с плавной регулировкой (К561ЛА7, IRF7309) Управление электромотором с плавной регулировкой (К561ЛА7, IRF7309)

С помощью этой схемы можно регулировать скорость вращения вала электродвигателя, а также изменять направление его вращения. Регулировкаосуществляется переменным резистором. В одном крайнем положении которого двигатель вращается в одну сторону, в другом — в другую. На среднем положении вал .

Простой самодельный регулятор мощности для нагрузки на 220В (4001) Простой самодельный регулятор мощности для нагрузки на 220В (4001)

Схема самодельного регулятора мощности для паяльника или лампы освещения, построен на микросхеме К561ЛЕ5. Большинство регуляторов регулирует мощность на нагрузки от 90-100° и в сторону уменьшения. Отличие этого регулятора в том, что в максимальном положении лампа будет гореть ярче .

Стабильный регулятор мощности паяльника на 36В Стабильный регулятор мощности паяльника на 36В

Предлагаемая конструкция регулятора мощности обеспечивает плавное регулирование в пределах от 50 до 100% мощности низковольтного электропаяльника. В отличие от фазового регулятора К1182ПМ1 данная схема имеет гораздо более стабильные параметры и не чувствительна к наводкам, а по стоимости деталей .

Схема регулятора частоты вращения для электродрели 220В Схема регулятора частоты вращения для электродрели 220В

Многие электродрели, особенно старых выпусков, не имеют регулятора частоты вращения (РЧВ), что является не только неудобством в эксплуатации электроинструмента, но и приводит к травматизму. РЧВ можно собрать по несложной схеме и снабдить им старенькую дрель. А если вышел из строя РЧВ (штатный) .

Регулятор мощности на симисторе ТС132-63 (220В) Регулятор мощности на симисторе ТС132-63 (220В)

Устройство предназначено для регулирования мощности, подводимой к активной нагрузке (лампам накаливания, нагревательным приборам) от сети переменного тока 220 В.Пределы регулирования от 0 до почти 220 В. Максимальная мощность нагрузки 5,5 кВт при использовании симистора ТС142-63-6, установленного .

Регулятор для плавного управления вентилятором отопления Регулятор для плавного управления вентилятором отопления

Простая приставка для управления скоростью вращения шумного вентилятора, построена на микросхеме К561ЛЕ5. У автомобилей ВАЗ очень шумные печки. Даже при установке ручки скорости вентилятора отопителя в минимальное положение печка шумит как пылесос. Но если скорость еще немного уменьшить противный .

Регулятор мощности — прерыватель питания нагрузки (К176ИЕ5, К176ИЕ8, К176ЛЕ10) Регулятор мощности - прерыватель питания нагрузки (К176ИЕ5, К176ИЕ8, К176ЛЕ10)

Принципиальная схема самодельного регулятора мощности, процентного соотношения времени выключенного и включенного состояния. Обычный регулятор мощности либо включает нагрузку на часть синусоидыпеременного напряжения, либо регулирует мощность путем пропуска нескольких волн сетевого напряжения .

Схема фазового регулятора мощности для нагрузки 220В (КУ221Г) Схема фазового регулятора мощности для нагрузки 220В (КУ221Г)

Принципиальная схема фазового регулятора мощности для нагрузки с питанием от 220В, который выполнен с применением тиристоров КУ221. В цветных телевизорах УПИМЦТ отечественного производства, отрицательно знаменитых качеством узлов строчной развёртки, в модуле БР-13 применялись высоковольтные .

Малогабаритный регулятор напряжения на симисторе Малогабаритный регулятор напряжения на симисторе

Выпускаемые в настоящее время микросхемы тринисторных и симисторных фазоимпульсных регуляторов действующего значения напряжения позволяют создавать компактные и удобные устройства. Наиболее предпочтительны для этих целей симисторные микросхемы, поскольку диодный мост в тринисторных регуляторах .

Регулятор температуры для управления нагревателем и охладителем (LM393) Регулятор температуры для управления нагревателем и охладителем (LM393)

Принципиальная схема автоматического устройства для контроля за температурой, которое управляет нагревателем и охладителем. Обычно, термостат поддерживает температуру, управляя нагревателем. Приснижении температуры его включает, при повышении — выключает. А стабилизация температуры происходит .

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector