Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Двуокись углерода

Двуокись углерода

Двуокись углерода (диоксид углерода, СО2) во всех своих состояниях широко используется практически во всех отраслях промышленности и агропромышленного комплекса.

На долю СО2 приходится 10 % всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Оксид углерода (углекислый газ, диоксид углерода, двуокись углерода, угольный ангидрид, углекислота) — CO2, бесцветный газ, без запаха, со слегка кисловатымвкусом.

Концентрация углекислого газа в атмосфере Земли составляет в среднем 0,038 %

Физические

Плотность при нормальных условиях 1,97 кг/м³. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно изтвёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Химические

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

Биологические

Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода длярастений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.

Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)

Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).

Получение

В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В пищевых целях используется газ, образующийся при спиртовом брожении. После предварительной обработки газ закачивается в баллоны.

Так же углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора, мела или соды с соляной кислотой. Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты.

Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

Применение

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (

65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.

Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада.

Углекислый газ используется в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.

Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Твёрдая углекислота — сухой лёд — используется в ледниках. Жидкая углекислота используется в качестве хладагента и рабочего тела в теплоэнергетических установках (в холодильниках, морозильниках, солнечных электрогенераторах и т. д.).

Читайте так же:
Виды насадок для шуруповерта

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.

Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.

Углекислый газ в атмосфере

Изменения концентрации атмосферной углекислоты (кривая Килинга). Измерения на обсерватории Мауна-Лоа.

Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40—70°) широт Северного полушария.

Вегетация в тропиках практически не зависит от сезона, сухой пояс пустынь 20—30° (обоих полушарий) дает малый вклад в круговорот углекислоты, а полосысуши, наиболее покрытые растительностью, расположены на Земле асимметрично (в Южном полушарии в средних широтах находится океан).
Поэтому с марта по сентябрь вследствие фотосинтеза содержание СО2 в атмосфере падает, а с октября по февраль — повышается. Вклад в зимний прирост дают как окисление древесины (гетеротрофное дыхание растений, гниение, разложение гумуса, лесные пожары), так и сжигание ископаемых топлив (угля, нефти, газа), заметно увеличивающееся в зимний сезон.

Использование азота в пищевой промышленности

Азот – наравне с кислородом, очень важный элемент в функционировании естественных природных процессов на нашей планете. В последнее время он получил широкое применение во всех сферах промышленности и производства: добыча твердых полезных ископаемых, нефти и газа, металлургия, консервирование различных емкостей (о которых мы уже рассказывали в предыдущих статьях), а также пищевая промышленность.

Сегодня сложно представить, что свежие молочные продукты, хлеб, незамороженное свежее мясо когда-то хранилось не более суток. Потребителю нужно было быть крайне внимательным в выборе продуктов, а производителям – изготавливать ровно столько, сколько клиенты смогут купить за ближайшие сутки, ни больше ни меньше. Предприятиям было сложно масштабироваться, производя продукцию для более удалённых населенных пунктов, так как доставлять свежие продукты на большие расстояния было крайне сложно, а к перевозчикам предъявлялись очень высокие требования.

Все кардинально изменилось, когда стало известно, что для продления срока годности пищевых продуктов необходимо использовать специализированную пищевую упаковку (MAP-упаковку), в которой атмосферный воздух заменяется на инертный газ – азот и биогон (смесь азота и углекислого газа). Азотная среда служит надежной защитой пищевых продуктов от окисления.

Преимущества упаковки в модифицированной среде достигаются благодаря увеличению объемов продаж продуктов питания за счет растущего потребительского спроса на продукцию с более долгим сроком хранения и с сохранением их природных качеств (без использования искусственных консервантов).

Использование газообразного азота в пищевой промышленности регламентируется ГОСТом №9293 от 01.01.1976: «…в газообразном азоте, используемом для производства и хранения пищевых продуктов, не допускается наличие механических частей, примесей масел, органических соединений…». Для получения пищевого азота, соответствующего ГОСТу по качеству, мы разработали линейку адсорбционных генераторов азота серии АВС-А.

В следующих статьях мы коснемся вопроса использования маслонаполненных и безмасляных компрессоров для получения пищевого азота, медицинского кислорода, а также этих газов в других областях, качество которых регламентируются специальными ГОСТами. В этом вопросе очень много ложных утверждений, с помощью которых недоброжелатели манипулируют фактами, отрицая прогресс развития технологий в области отчистки сжатого воздуха, азота и кислорода и призывая к использованию старого, нетехнологического и дорогого оборудования.

Хранение овощей и фруктов

Для долгосрочного хранения свежих овощей и фруктов применяется технология замещения атмосферного воздуха на инертный газ. Азот, полученный на адсорбционной азотной станции, поступая в камеру хранения, снижает концентрацию остаточного кислорода в атмосферном воздухе. Недостаток кислорода приводит к гибели всех аэробных бактерий, которые способствуют протеканию процесса гниения овощей и фруктов.

На последующих этапах на производстве происходит упаковка овощей и фруктов в специализированную упаковку, внутри которой присутствует инертный газ, позволяющий долгое время поддерживать свежесть продуктов на прилавках магазинов.

Чипсы и снеки

Процесс упаковки такого типа продукции происходит прямо на конвейерной ленте, где в последний момент запаивания происходит впрыскивание инертной среды в упаковку.

Таким же образом происходит упаковка молока и мяса, а также большого количества разнообразных нарезок молочной и мясной продукции (сыры, колбасы, рыба).

Использование азота в виноделии

Влияние атмосферного воздуха, а именно кислорода, негативно влияет на цвет, вкус и аромат винных изделий. Для замещения кислорода в виноделии также активно используется азот, позволяющий избавиться от нежелательных процессов (размножения бактерий, окисления вина).

Читайте так же:
Бензопила олео мак 941с регулировка карбюратора

Для этого используются следующие технологические процессы:

  • Барботаж – процесс удаления из вина кислорода, ухудшающего качество напитка. Кроме того, этот процесс способствует уменьшению концентрации углекислого газа.
  • Пижаж – процесс осаждения кожуры и мякоти винограда, находящихся в верхней части емкости (сосуда). Долгое время этот процесс проводился вручную, но сейчас для этого используется специальный вращающийся механизм, в который поступает газообразный азот, уменьшающий удельную плотность жидкости, в следствие чего происходит оседание мякоти и кожуры в нижнюю часть емкости.

Также газообразный азот активно используют в технологическом процессе по доставке жидкой фазы вина от больших емкостей (хранилищ) до установки по розливу в малую тару: в верхнюю часть хранилища подается азот под давлением, который позволяет продукту естественным образом перетекать по трубопроводам до установки по бутилированию вина. Продувка этих трубопроводов также производится с помощью газообразного пищевого азота из адсорбционной азотной установки.

На одном предприятии может использоваться несколько точек забора газообразного азота для совершенно разного технологического оборудования, с разными характеристиками по расходу и давлению. Для каждой точки совершенно не обязательно устанавливать отдельную азотную станцию: одна правильно подобранная и настроенная адсорбционная азотная станция серии АВС-А возьмет на себя обслуживание всего предприятия, а регулировку и настройку параметров подачи азота для каждой точки потребления можно производить на панели оператора, информацию с которой также можно вывести на экран персонального компьютера или ноутбука в пультовой.

Также газообразный азот активно используется для консервации заполненных продуктом емкостей: в процессе розлива газ закачивается в верхнюю часть сосуда (бутылок, пакетов), что позволяет защитить вино и другие напитки от окисления и утраты первоначальных вкусовых качеств во время долгой транспортировки и хранения на полках магазинов.

Еще одна сфера использования азота в виноделии – перемешивание продукта в емкостях с помощью подачи газообразного азота в нижнюю полость емкости. Это позволяет отказаться от использования механического перемешивания, которое оказывает отрицательное влияние на природные качества винного продукта.

Хранение масла и жиров

При хранении масла и жиров под атмосферным воздухом возникают те же процессы окисления, что и при хранении других продуктов. Только химические реакции для каждого продукта свои, но источником «всеобщего раздражения» все также является кислород. Хотя при понижении температуры хранения эти процессы можно и замедлить, но при замене атмосферного воздуха в емкостях на азот удается избежать наступление процесса окисления на очень долгое время.

Просим обратить внимание, что использование инертного газа никак не влияет на качество производимой продукции: азот не вступает в химические реакции ни с производимым продуктом, ни с организмом человека.

Также азот используют в процессе барботажа масла – инертный газ впрыскивают в масло, следствием чего является удаление из продукта водяных паров и остаточного кислорода, который мог попасть туда вовремя даже самого непродолжительного контакта масла с атмосферным воздухом.

Пивоваренная промышленность

Как и в виноделии, азот очень широко применяется в процессе изготовления хмельного напитка:

  • Хранение ингредиентов
    Солод, кукуруза, хмель и другие зерновые при длительном хранении подвергаются воздействию кислорода из атмосферного воздуха.
  • Очистка и наполнение пивных кег
    Как и в других отраслях, продувка и наполнение пивным продуктом емкостей происходит с помощью пищевого газообразного азота.
  • Смешивание
    Азот подается на дно сосудов и образует пузырьки, которые запускают процесс перемешивания продукта в емкостях, заменяя сложное и дорогостоящее оборудование по механическому перемешиванию больших объемов.
  • Вытеснение
    На линии розлива готового продукта азот впрыскивается в бутылки для длительного хранения пива на полках магазинов

Стоит обратить внимание, что углекислый газ отрицательно воздействует на вкусовые характеристики пива, поэтому использование пищевого газообразного азота в пивоварении более чем оправдано.

КАК ПРАВИЛЬНО ПОДОБРАТЬ АЗОТНУЮ СТАНЦИЮ ДЛЯ ПИЩЕВОГО ПРОИЗВОДСТВА:
  • Определитесь с концентрацией
    Для пищевого производства чаще всего используется азот, концентрацией от 99,9% до 99,999%, но для каждого продукта свои нюансы.
  • Рассчитайте производительность станции
    Учитывая все параметры точек потребления, рассчитайте общее количество потребляемого азота. Обратите внимание на единицы измерения, расход должен быть приведен к нормальным условиям, м³/час при давлении 1 бар и температуре 20°С.
  • Учитывайте условия эксплуатации
    Все параметры станции указаны при стандартных условиях эксплуатации 20°С, повышение температуры выше 35°С отрицательно влияет на производительность станции.
  • Подбирайте компрессорное оборудование с запасом 10%
    Если вы планируете подбирать оборудование для азотной станции самостоятельно, советуем обратить внимание на следующие факторы: характер потребления, количество пиковых нагрузок, дополнительные потери сжатого воздуха на соединениях, объем ресиверов, длину воздушных и азотных трубопроводов и многое другое. В жарких регионах советуем рассчитывать оборудование с дополнительным запасом до 15%
  • Запросите индивидуальный расчет
    Каждое пищевое производство уникально. Советуем Вам обратиться за подробным расчетом азотной станции в нашу компанию.
Читайте так же:
Что такое натуральный каучук
Биогон

Компонентная газовая смесь, получившая название биогон, также активно применяется в пищевой промышленности. Ее цель – увеличение сроков хранения продукции без потери качества. Получение газа биогона заключается в смешивании чистых инертных газов: азота, кислорода и углекислого газа. Например, смесь азота и углекислого газа в соотношении 80/20 (80% N2, 20% СО2) используется для уменьшения образования пены при розливе пива. А смесь кислорода и углекислого газа в соотношении 80/20 (80 O2, 20% СО2) используется в упаковке некоторых типов молочной продукции.

Также бывают и трехкомпонентные смеси, состоящие из азота, кислорода и углекислого газа в разных пропорциях.

На рынке есть множество компаний, занимающихся поставкой готовых смесей в заданных пропорциях в баллонах и моноблоках под высоким давлением. Неудобство только в том, что такие баллоны очень быстро заканчиваются, а в стоимость газа включена и аренда баллонов/моноблоков. Это оправдано, когда потребление достаточно мало (10-20 баллонов в месяц), но если говорить о большом производстве, то стоит обратить внимание на нашу линейку адсорбционных азотно-кислородных станций, комплектующихся смесителем, позволяющих получать пищевой газообразный азот и кислород из атмосферного воздуха, ограничившись заказом нескольких баллонов углекислоты в месяц, которых более чем достаточно для создания пищевой смеси биогон. Установка на своем производстве адсорбционной азотно-кислородной станции позволит отказаться от 80% баллонного парка, значительно сэкономив средства и высвободить место. Более того, на собственной азотно-кислородной установке в любой момент можно изменить пропорции смеси и подстроить станцию под конкретные задачи.

Углекислый газ

АРГОН КАК ЗАЩИТНЫЙ СВАРОЧНЫЙ ГАЗ

Углекислый газ (двуокись углерода, диоксид углерода) занимает важнейшее место среди технических газов, он широко используется практически во всех отраслях промышленности и агропромышленного комплекса. На долю СО 2 приходится 10% всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Направления использования углекислого газа в различных агрегатных состояниях многообразны – пищевая промышленность, сварочные газы и смеси, пожаротушение и т.д. Всё больше находит применение и его твердая фаза – сухой лёд, от заморозки, сухих брикетов до очистки поверхностей (бластинга).

Получение

Извне углекислоту получить нельзя по причине того, что в атмосфере ее почти не содержится. Животные и человек получают её при полном расщеплении пищи, поскольку белки, жиры, углеводы, построенные на углеродной основе, при сжигании с помощью кислорода в тканях образуют углекислый газ (СО 2 ).

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). В пищевых целях используется газ, образующийся при спиртовом брожении. Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества СО 2 получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например, мрамора, мела или соды с соляной кислотой. Побочные источники производства СО 2 — продукты горения; брожение; производство жидкого аммиака; установки риформинга; производство этанола; природные источники.

При получении углекислого газа в промышленных масштабах используют три основные группы сырья.

Группа 1 — источники сырья, из которых можно производить чистый СО 2 без специального оборудования для повышения его концентрации:

  • газы химических и нефтехимических производств с содержанием 98-99% СО 2 ;
  • газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99% СО 2 ;
  • газы из естественных источников с 92-99% СО 2 .

Группа 2 — источники сырья, использование которых обеспечивает получение чистого СО 2 :

  • газы малораспространенных химических производств с содержанием 80-95% СО 2 .

Группа 3 — источники сырья, использование которых дает возможность производить чистый СО 2 только с помощью специального оборудования:

  • газовые смеси, состоящие в основном из азота и углекислого газа (продукты сгорания углеродсодержащих веществ с содержанием 8-20% СО 2 ;
  • отходящие газы известковых и цементных заводов с 30-40% СО 2 ;
  • колошниковые газы доменных печей с 21-23% СО 2 ;
  • состоящие в основном из метана и углекислого газа и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45% СО 2 ;
  • попутные газы при добыче природного газа и нефти с содержанием 20-40% СО 2 .

Применение

По ряду оценок, потребление СО2 на мировом рынке превышает 20 млн. метрических тонн в год. Столь высокий уровень потребления формируется под влиянием требований пищевой промышленности и нефтепромысловых предприятий, технологий газирования напитков и других промышленных нужд, например, снижения показателя Ph установок водоочистки, проблем металлургии (в том числе использования сварочного газа) и т.д.

Читайте так же:
Краскопульт пневматический для водоэмульсионной краски

Потребление углекислого газа неуклонно растет, поскольку расширяются сферы его применения, которые охватывают задачи от промышленного назначения до пищевого производства – консервация продуктов, в машиностроении от сварочного производства и приготовления защитных сварочных смесей до очистки поверхностей деталей гранулами «сухого льда», в сельском хозяйстве для подкормки растений, в газовой и нефтяной промышленности при пожаротушении.

Основные области применения СО 2 :

  • в машиностроении и строительстве (для сварки и прочее);
  • для холодной посадки частей машин;
  • в процессах тонкой заточки;
  • для электросварки, основанной на принципе защиты расплавленного металла от вредного воздействия атмосферного воздуха;
  • в металлургии;
  • продувка углекислым газом литейных форм;
  • при производстве алюминия и других легкоокисляющихся металлов;
  • в сельском хозяйстве для создания искусственного дождя;
  • в экологии заменяет сильнодействующие минеральные кислоты для нейтрализации щелочной отбросной воды;
  • в изготовлении противопожарных средств;
  • применяется в углекислотных огнетушителях в качестве огнетушащего вещества, эффективно останавливает процесс горения;
  • в парфюмерии при изготовлении духов;
  • в горнодобывающей промышленности;
  • при методе беспламенного взрыва горных пород;
  • в пищевой промышленности;
  • используется как консервант и обозначается на упаковке кодом Е290;
  • в качестве разрыхлителя теста;
  • для производства газированных напитков;

Напитки с углекислотой

Напитки с углекислотой

Газирование напитков может происходить одним из двух путей:

  1. При производстве популярных сладких и минеральных вод используется механический способ газирования, который предполагает насыщение углекислым газом какой-либо жидкости. Для этого необходимо специальное оборудование (сифоны, акратофоры, сатураторы) и баллоны со сжатым углекислым газом.
  2. При химическом способе газирования углекислоту получают в процессе брожения. Таким образом получается шампанское вино, пиво, хлебный квас. Углекислота в содовых водах получается в результате реакции соды с кислотой, сопровождающейся бурным выделением углекислого газа.

СО2 КАК СВАРОЧНЫЙ ГАЗ

СО 2 как сварочный газ

Начиная с 1960 года широкое распространение получила сварка легированных и углеродистых сталей в среде углекислого газа (СО 2 ), отвечающего требованиям ГОСТ 8050. В последнее время все большее распространение в сварочных технологиях машиностроительных предприятий находит применение сварочных газовых смесей аргона и гелия, при этом многие наиболее востребованные газовые смеси включают в себя небольшое количество активных газов (СО 2 или О 2 ), необходимых для стабилизации сварочной дуги. Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом по-прежнему продолжает оставаться углекислый газ СО 2 , что объясняется физическими свойствами этого защитного газа и его доступностью.

Чтобы уточнить стоимость или получить дополнительную консультацию,
вы можете позвонить по тел.: +7 (495) 545-44-62 или отправить запрос .

Углекислый газ в теплице

Необходимость подавать углекислый газ в теплицу наглядно демонстрирует общая формула фотосинтеза:

6СО2 +6Н2О+энергия света=С6Н12О6 +6О2↑

Здесь видно, что глюкоза (основное органическое вещество, источник энергии для растений) образуется из углекислого газа и воды при участии энергии света. Получается, что СО2 служит одним из важнейших кирпичиков в обменных процессах.

Иногда можно услышать мнение, что СО2 в теплицу подавать не следует. Некоторые объясняют это тем, что углекислота выделяется как продукт распада и результат жизнедеятельности почвенных микроорганизмов, а другие – тем, что конструкция теплицы сама по себе не герметична, и нужные вещества поступают из атмосферного воздуха. Однако на практике оказывается, что эти утверждения могут быть справедливы только для частных домохозяйств, где не используются стерильные искусственные субстраты, а сами теплицы построены с нарушениями герметичности. В новых аграрных комплексах вполне реальна ситуация, когда содержание углекислого газа внутри теплицы в 4 раза меньше, чем в атмосфере, а это приводит к замедлению роста растений.

Подача СО2 в теплицы: когда и почему это необходимо

Растения в сухом остатке на 95% состоят из углерода, причем черпают его они из атмосферы. В каждом кубическом метре воздуха содержится 0,56 грамм диоксида углерода. Но растения способы усвоить в 4 раза больше. В стандартных условиях концентрация СО2 составляет 0,03-0,04% от общего объема воздуха. Агрохимики рекомендуют увеличивать концентрацию углекислого газа до 0,1-0,15%, то есть в 3-5 раз по сравнению с атмосферным воздухом. Особенно оправданно это в условиях усиленного рассеянного освещения, когда потребление СО2 возрастает многократно. Соответственно, это позволит увеличить концентрацию диоксида углерода до 0,2-0,6%, в результате чего существенно ускорится процесс фотосинтеза.

А это, в свою очередь, сокращает сроки созревания плодов на 7-12 дней в среднем. Также растет и урожайность – по статистике, в теплицах, где углекислый газ подается дополнительно, она на 15-40% выше (в зависимости от вида культур). Но не стоит допускать, чтобы концентрация СО2 превышала 0,6%, поскольку в этом случае рост культур может замедлиться. Соответственно, нужно знать, как увеличить содержание углекислого газа в теплице и что делать, если обнаружено повышенное СО2. Чтобы иметь возможность проконтролировать эти показатели в нужные моменты времени, устанавливают специальные датчики.

Читайте так же:
Самодельные лодочные моторы из бензопилы

Почему важно контролировать количество СО2 в теплицах?

Подача углекислого газа в теплицу может осуществляться тремя способами:

  • Ввод отработанных газов из котельной;
  • Прямая газация путем установки плазменной горелки;
  • Установка газовой пушки или подача углекислоты напрямую из баллона.

Вот как можно получить углекислый газ в теплице. При подаче газа как отработанного продукта горения из котельных его нужно предварительно охладить. Однако вопрос чистоты поставляемой газовой смеси все равно остается открытым: побочные продукты, содержащиеся в ней, могут негативно влиять на температурный и влажностной режимы внутри теплицы. Также в смеси содержится угарный газ, а он опасен не только для человека, но и для растений.

Более безопасным считается использование баллонов с очищенным углекислым газом (чистота газовой смеси – 99,8%, вредных веществ в составе не содержится, по ГОСТ 8050-85). В этом случае можно организовать централизованную подачу углекислоты. В перечень необходимого оборудования в этом случае входят и приборы для измерения СО2 в теплице – контрольно-измерительная аппаратура, способная поддерживать необходимую концентрацию диоксида углерода и изменять ее при необходимости (величина будет отличаться для разных культур).

Современные датчики СО2

Системы подачи СО2 в теплицах позволяют обеспечить подачу газовой смеси, принимающей активное участие в фотосинтезе. Стабильное присутствие СО2 в нужной концентрации создает предпосылки для раннего стабильного цветения и увеличивает урожайность даже лучше, чем применение минеральных удобрений.

Контроль содержания СО2 в воздухе теплицы (то есть состояния и качества воздушной среды) обеспечивают специальные датчики. Они устанавливаются в разных тепличных хозяйствах, вне зависимости от сорта выращиваемых там культур.

Принцип действия приборов

Регулятор СО2 в теплице – это электронный прибор с энергонезависимой памятью, реле, которое будет срабатывать (включаться и выключаться) при заданных значениях. Устройство может интегрироваться в комплекс с промышленными увлажнителями и вентиляционной системой.

Датчик углекислого газа в теплице обеспечивает измерения концентрации в диапазоне от 0 до 2000ppm, а опционально – до 5000ppm или 10000ppm. Допустимая температура – до 50 градусов, влажность – до 95%, при этом появления конденсата допускать нельзя.

Сенсорный датчик углекислого газа в теплице работает по такому принципу: измеряется интенсивность инфракрасного излучения до и после поглощения углекислого газа, измеряется количество света, прошедшего через светофильтр и поглощенного углекислотой. Прибор высчитывает разницу между поглощенным потоком и прошедшим мимо оптического устройства.

Виды датчиков

Датчики углекислого газа СО2 в теплице выпускаются в виде стационарных (работающих от электрической сети) и автономных (с независимым источником питания) устройств, рассчитанных на настенных, напольный, настольный монтаж или непосредственно на установку в вентканал.

Устройства комплектуются корпусами из поликарбоната, отличающимися высокой ударопрочностью и химической устойчивостью.

Дисперсионные анализаторы используют одноволновое излучение, получаемое монохроматографом. Высокую стабильность измерений демонстрируют модели с недисперсионным инфракрасным методом детектирования (они обеспечивают точность вне зависимости от содержания кислорода в воздухе). Современные модели работают по методу NDIR (недисперсионной ИК-спектрометрии). Они высокочувствительны, отличаются продолжительным эксплуатационным периодом, не нуждаются в сложных настройках и выпускаются в современном дизайне. Однако следует помнить, что они чувствительны к пыли и влаге. Поэтому необходимо выбирать модели в пылевлагозащищенном корпусе IP65, а также правильно подбирать место установки.

Как выбрать датчики в теплицу?

Все измерительные приборы, устанавливаемые в теплицах, должны соответствовать особенностям климата (высокая влажность и повышенное содержание в воздухе загрязняющих веществ, в том числе гербицидов, удобрений).

Основными критериями выбора служат:

  • Высокая точность измерения, в пределах 30ppm;
  • Прочный, функциональный корпус, повышенная степень защиты его от попадания влаги и пыли;
  • Наличие реле;
  • Удобная световая и звуковая индикация для быстрого контроля и проверки работоспособности;
  • Наличие процедуры автокалибровки, компенсирующей старение инфракрасного источника;
  • Защелкивающийся монтажный фланец на корпусе для удобства установки.

Выбирайте профессиональные датчики, позволяющие контролировать СО2 в теплице. Эти измерители содержания углекислоты помогают регулировать подачу газа и соблюдать агротехнику. В каталоге компании Измеркон представлены высокоточные детекторы углекислого газа и канальные преобразователи концентрации СО2. В парниках это оборудование позволяет контролировать генератор подачи газа и повышать урожайность естественным способом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector