Opori-osveshenia.ru

Опоры освещения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диод Шоттки

Диод Шоттки

Дио́д Шо́ттки — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки.

В диодах Шоттки в качестве барьера Шоттки используется переход металл-полупроводник, в отличие от обычных диодов, где используется p-n-переход. Переход металл-полупроводник обладает рядом особенных свойств (отличных от свойств полупроводникового p-n-перехода). К ним относятся: пониженное падение напряжения при прямом включении, высокий ток утечки, очень маленький заряд обратного восстановления. Последнее объясняется тем, что по сравнению с обычным p-n-переходом у таких диодов отсутствует диффузия, связанная с инжекцией неосновных носителей, то есть они работают только на основных носителях, а их быстродействие определяется только барьерной ёмкостью.

Диоды Шоттки изготавливаются обычно на основе кремния (Si) или арсенида галлия (GaAs), реже — на основе германия (Ge). Выбор металла для контакта с полупроводником определяет многие параметры диода Шоттки. В первую очередь — это величина контактной разности потенциалов, образующейся на границе металл-полупроводник. При использовании диода Шоттки в качестве детектора она определяет его чувствительность, а при использовании в смесителях — необходимую мощность гетеродина. Поэтому чаще всего используются металлы Ag, Au, Pt, Pd, W, которые наносятся на полупроводник и дают величину потенциального барьера 0,2…0,9 эВ.

Допустимое обратное напряжение выпускаемых диодов Шоттки ограничено 1200 вольтами (CSD05120 и аналоги), на практике большинство диодов Шоттки применяются в низковольтных цепях при обратном напряжении порядка единиц — нескольких десятков вольт.

Содержание

Свойства диодов Шоттки [ править | править код ]

  • Падение напряжения на диоде Шоттки при его прямом включении составляет 0,2—0,4 вольта, в то время как для обычных, например, кремниевых диодов, это значение порядка 0,6—0,7 вольта. Однако столь малое падение напряжения на диоде Шоттки при его прямом включении присуще только сериям с предельно-допустимым обратным напряжением порядка десятков вольт, тогда как у приборов с более высоким предельно-допустимым обратным напряжением становится сравнимым с прямым падением напряжения кремниевых диодов, что может ограничивать применение диодов Шоттки.
  • Теоретически диод Шоттки может обладать низкой электрической ёмкостью барьера Шоттки. Отсутствие p-n-перехода позволяет повысить рабочую частоту. Это свойство используется в логических интегральных микросхемах, где диодами Шоттки шунтируются переходы база-коллектор транзисторов. В силовой электронике малое время восстановления позволяет строить выпрямители на частоты в сотни кГц и выше. Например, у диода MBR4015 (предельно-допустимое обратное напряжение 15 В, предельно-допустимый прямой ток 40 А), предназначенного для выпрямления высокочастотного напряжения, время обратного восстановления равно 10 кВ/мкс [1] .
  • Благодаря указанным выше достоинствам, выпрямители на диодах Шоттки отличаются от выпрямителей на обычных диодах пониженным уровнем помех из-за отсутствия коротких импульсов, возникающих при запирании диода при обратном восстановлении, поэтому они предпочтительны для применения в аналоговых вторичных источниках питания.
  • Даже при кратковременном превышении максимально допустимого значения обратного напряжения диод Шоттки необратимо выходит из строя, в отличие от обычных кремниевых диодов с p-n переходом, которые переходят в режим обратимого [2]лавинного пробоя, и их структура не разрушается, если рассеиваемая кристаллом диода мощность не превышает допустимых значений. После снятия высокого обратного напряжения диод полностью восстанавливает свои свойства.
  • Диоды Шоттки характеризуются повышенными (относительно обычных кремниевых p-n-диодов) обратными токами, возрастающими с ростом температуры кристалла. Например, для прибора 30CPQ150 обратный ток при максимальном обратном напряжении изменяется от 0,12 мА при +25 °C до 6,0 мА при +125 °C. У низковольтных диодов в корпусах ТО220 обратный ток может превышать сотни миллиампер (MBR4015 — до 600 мА при +125 °C). Неудовлетворительные условия теплоотвода при работе диода Шоттки с высокими токами приводят к его тепловому пробою.
Читайте так же:
Чем просверлить каленую сталь

Номенклатура диодов Шоттки [ править | править код ]

Диоды Шоттки часто входят составные в современные дискретные полупроводниковые приборы:

_____________________

ESD HBM — электростатический разряд по модели человеческого тела.

DC — постоянный (ое) …

mil – 1/1000 доля дюйма (1 mil =25,4мкм).

Основные характеристики диодов Шоттки.

— Широкий диапазон рабочих токов и напряжений : I F ( AV )=0,5÷60 A ; V RRM =15÷200В;

— Высокое значение прямого ударного тока – I FSM ;

— Низкое прямое напряжение – V F ;

— Малые значения обратных токов – I R ;

— Низкая рассеиваемая мощность;

— Три класса диодов, отличающихся диапазоном рабочих температур:

а) высокотемпературные диоды Шоттки с супер-низким уровнем обратных токов;

б) стандартные диоды Шоттки;

в) низкотемпературные диоды Шоттки с низким уровнем V F .

Диапазон основных параметров

C тандартные ДШ.

-Высокие технические характеристики E AS и I RRM , характеризующие надежность прибора при воздействии стрессовых перегрузок в режиме лавинного пробоя.

-Высокая устойчивость к воздействию электростатических разрядов, соответствующая требованиям стандартов JEDEC и MIL — STD -883 G c уровнем VESD =+/-8 kV (контакт) по модели человеческого тела (С=100 pF , R =1500 ohm ), а также требованиям к электронным компонентам для автомобильной электроники, устанавливаемым стандартом AEC — Q 101-001.

-Электрические характеристики подтверждаются тестированием 100% кристаллов в нормальных условиях (ТА=25ºС) по основным параметрам: VB , IR , IRRM , а также выборочным тестированием кристаллов на каждой пластине по параметру VF при номинальном значении прямого тока IF ( AV ).

Значение обратного тока при повышенной температуре тестируется на выборках кристаллов на 100% пластин.

Соответствие остальных параметров требованиям спецификаций гарантируется конструкцией кристаллов.

После тестирования электрических параметров проводится контроль внешнего вида с выбраковкой потенциально ненадежных кристаллов на 100% пластин.

ЗАО «ВЗПП-Микрон» производит и поставляет кристаллы диодов Шоттки в составе неразделенных пластин диаметром 100мм и 150мм. При этом потребителям предоставляется возможность выбора варианта исполнения кристалла в зависимости от используемого метода сборки прибора:

а) кристалл с Al металлизацией лицевой стороны (анод) – для монтажа внутренних выводов методом ультразвуковой сварки;

б) кристалл с многослойной металлизацией анода Al -Ni-Ag- для монтажа в корпус методом пайки с применением PbSn припоев.

Металлизация катода — Ti — Ni — Ag позволяет проводить монтаж кристалла на кристаллодержатель методом пайки с применением PbSn припоев.

Потребителю также предоставляется возможность выбора подходящего ему размера кристалла, исходя из оптимального соотношения цены и качества.

Упаковка и хранение пластин с кристаллами ДШ.

Пластины с кристаллами ДШ упаковываются в полипропиленовые футляры. Пластины укладываются в футляр через прокладки из не пылящего материала и через каждые 5 пластин прокладываются прокладками из поролона. В каждый футляр вкладывается упаковочный ярлык на котором указан тип ДШ, номер партии, количество пластин и количество годных кристаллов, а также полный перечень пластин с указанием их номеров и количества годных на каждой пластине.

Каждый футляр помещается в полиэтиленовый пакет, из которого откачивается воздух . Далее пакет запаивается и упакованные пластины хранятся в вакууме с целью сохранения высоких потребительских свойств в процессе транспортировки и при хранении в складских условиях в течение длительного времени.

Гарантийный срок хранения пластин без нарушения вакуумной упаковки – один год. После вскрытия вакуумной упаковки пластины должны храниться в контролируемой атмосфере осушенного азота и в течение не более 30 суток должны быть запущены в производство и пройти операцию герметизации (загерметизированы в корпус или залиты защитным слоем компаунда).

При нарушении гарантийных сроков хранения пластины подлежат дополнительному тестированию для оценки возможности их использования в производстве с какими-либо доработками или без таковых.

Читайте так же:
Ремонт натяжителя цепи бензопилы

Указания по применению.

1. Вскрытие вакуумной упаковки и футляра с пластинами должно проводиться в чистом рабочем помещении класса 100000 и выше с параметрами микроклимата в рабочей зоне: Т=23+/-5ºС и влажности 45+/-5%.

2. Пластины ДШ утоняются методом шлифовки до толщины 200-300мкм. Поэтому они очень хрупкие и требуют к себе бережного и аккуратного обращения. С целью снижения вероятности боя пластин при перегрузке их из футляра в транспортные кассеты рекомендуется снять крышку и перевернуть футляр вверх дном на плоскую поверхность (на стол). Затем аккуратно поднять корпус футляра, освобождая при этом пластины вместе с поролоновыми и бумажными прокладками. Теперь можно с помощью вакуумного пинцета брать пластины и переносить их в транспортную кассету. После снятия крышки целесообразно положить на её место плоскую пластину из любого материала для исключения возможности выпадения пластин из футляра в процессе его перевертывания. Применение пинцетов с механическим захватом крайне не желательно в связи с высокой вероятностью появления трещин и сколов.

3. Разделение пластин на кристаллы рекомендуется проводить методом дисковой резки алмазными дисками, обеспечивающими ширину реза 25-35мкм, с последующей промывкой в проточной деионизованной воде. Промывка должна обеспечивать полное удаление продуктов резки с поверхности кристаллов.

4. Монтаж кристаллов на кристаллодержатель рекомендуется проводить методом пайки с применением припоев или припойных паст на основе Pb / Sn в защитной атмосфере водорода или формир-газа ( N 2+ H 2 с содержанием H 2 не менее 5%). Также возможно применение метода вакуумной пайки. Максимальная температура в процессе пайки кристаллов ДШ высокотемпературной и стандартной серии не должна превышать 420 ºС , а для кристаллов низкотемпературной серии — 350 ºС. Время выдержки кристаллов при максимальной температуре должно быть минимизировано для предотвращения изменения спецификационных параметров. Кристаллодержатель перед пайкой должен быть очищен от загрязнений и окисных пленок химическим методом или отжигом в водородной среде. Аналогичные рекомендации распространяются и на процесс сборки кристаллов с серебряной металлизацией анода (лицевой стороны).

5. Для кристаллов с Al металлизацией лицевой стороны (анода) монтаж внутренних выводов должен проводиться методом ультразвуковой сварки алюминиевой проволокой диаметром 250-400мкм. Диаметр проволоки и количество проволок рекомендуется оптимизировать в зависимости от размеров металлизации анода и спецификационных требований к параметрам прибора ( VF , IFSM ). При этом необходимо учитывать, что увеличение количества проволок позволяет улучшить токораспределение по площади кристалла и за счет этого улучшить параметры VF , IFSM . Кроме того, увеличение количества проволок при уменьшении их диаметра позволяет снизить вероятность возникновения механических напряжений и микротрещин в месте сварки. При этом снижается вероятность повреждения и деградации барьера Шоттки. Повышается надежность прибора. Точки сварки должны быть равномерно распределены по площади анода.

6. Перед корпусированием сборка должна быть очищена от загрязнений и отожжена 2-3 часа при 150ºС для удаления влаги с поверхности кристалла. При корпусировании в не герметичный корпус кристалл рекомендуется покрыть силиконовым защитным слоем. Процесс покрытия проводить в атмосфере осушенного азота.

АО «ВЗПП-Микрон»
Россия, 394007,
Воронеж,
Ленинский проспект, 119 "А"

Примеры характеристик

13. Диоды Шоттки: устройство, принцип действия, основные параметры

Диод Шоттки

Изображения на схемах

Дио́д Шо́ттки (назван в честь немецкого физика Вальтера Шоттки) — полупроводниковый диод с малым падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (вместо p-n перехода, как у обычных диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250 В (MBR40250 и аналоги), на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Читайте так же:
Двигатель от стиральной машины с прямым приводом

Свойства диодов Шоттки

Достоинства

В то время, как обычные кремниевые диоды имеют прямое падение напряжения около 0,6—0,7 вольт, применение диодов Шоттки позволяет снизить это значение до 0,2—0,4 вольт. Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт, выше же падение напряжения становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжение нормируется на уровне от 0,75 В (T = 125 °C) до 1,07 В (T = −55 °C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту. Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов. В силовой электронике малая ёмкость перехода (то есть малое время восстановления) позволяет строить выпрямители на частоты в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 1000 В/мс.

Благодаря лучшим временны́м характеристикам и малым ёмкостям перехода выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, поэтому они предпочтительны в традиционных трансформаторных блоках питания аналоговой аппаратуры.

При кратковременном превышении максимального обратного напряжения диод Шоттки необратимо выходит из строя (КЗ — короткое замыкание), в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью востанавливает свои свойства.

Диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжениии изменяется от 0,12 мА при +25 °C до 6,0 мА при +125 °C. У низковольтных диодов в корпусах ТО220 обратный ток может превышать сотни миллиампер (MBR4015 — до 600 мА при +125 °C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Номенклатура диодов Шоттки

Диоды Шоттки — составные части современных дискретных полупроводниковых приборов:

МОП-транзисторы со встроенным обратным диодом Шоттки (впервые выпущены компанией International Rectifier под торговой маркой FETKY в 1996) — основной компонент синхронных выпрямителей. В отличие от обычного МОП-транзистора, обратный диод которого отличается высоким прямым падением напряжения и посредственными временны́ми характеристиками, использование обратного диода Шоттки позволяет строить силовые синхронные выпрямители с частотой преобразования в сотни кГц и выше. Существуют приборы этого класса со встроенными драйверами затворов и устройствами управления синхронным выпрямлением.

Так называемые ORing-диоды и ORing-сборки — силовые диоды и диодные сборки, применяемые для объединения параллельных источников питания общей нагрузки в устройствах повышенной надёжности (логическое ИЛИ по питанию). Отличаются особо низким, нормируемым прямым падением напряжения. Например, специализированный миниатюрный диод MBR140 (30 В, 1 А) при токе 100 мА имеет прямое падение напряжения не более 360 мВ при +25 °C и 300 мВ при +85 °C. ORing-диоды характеризуются относительно большой площадью P-N перехода и низкими удельными плотностями тока.

Барьер Шоттки

Барьером Шоттки называется потенциальный барьер в приконтактном слое, равный разности работ выходов металла и полупроводника (потенциальный барьер создаётся неподвижным пространственным зарядом в полупроводнике, а не за счёт возникновения между металлом и полупроводником промежуточного химического слоя ):

Диоды использующие этот барьер называются диодами Шоттки или диодами с барьером Шоттки (ДШБ).

Вольт-амперная характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально сильно растёт с ростом приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обеих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями — электронами. По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки — типичная для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.

Читайте так же:
Горизонтальная дисковая пилорама своими руками

Диоды Шоттки — устройство, виды, характеристики и использование

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Вольт-амперная характеристика для барьера Шоттки

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Читайте так же:
Формула расчета модуля шестерен

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Корпус сдвоенного диода Шоттки

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector