Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автомат для зарядного устройства

Автомат для зарядного устройства

Зарядное устройство для автомобильных аккумуляторов желательно дополнить автоматом, включающим его при понижении напряжения на аккумуляторе до минимума и отключающим после зарядки. Особенно это актуально при использовании батареи в качестве резервного питания или при долгосрочном хранении аккумулятора без работы — для предотвращения саморазряда .

Предлагаемая схема самодельного автомата включает аккумуляторную батарею на зарядку при понижении на ней напряжения до определенного уровня и отключает при достижении максимума.

Максимальным напряжением для кислотных автомобильных аккумуляторов является величина 14,2. 14,5 В, а минимально допустимое при разряде — 10,8 В. Минимум желательно ограничить для большей надежности величиной 11,5. 12 В.

Схема автомата включения-отключения зарядного устройства состоит из компаратора на транзисторах VT1, VT2 и ключа на VT3, VT4.

Нажмите на рисунок для просмотра.

Работает устройство следующим образом. После подключения батареи и включения сети нажимают кнопку SB1 "Пуск". Транзисторы VT1 и VT2 закрываются, открывая ключ VT3, VT4, включающий реле К1. Оно своими нормально замкнутыми контактами К1.2 отключает реле К2, нормально замкнутые контакты которого (К2.1), замыкаясь, подключают зарядное устройство (ЗУ) к сети.Такая сложная схема коммутаций используется по двум причинам:

во-первых, обеспечивается развязка высоковольтной цепи от низковольтной;

во-вторых, чтобы реле К2 включалось при максимальном напряжении АБ и отключалось при минимальном, т.к. примененное реле РЭС22 (паспорт РФ 4500163) имеет напряжение включения 12. 12,5 В.

Контакты К1.1 реле К1 переключаются в нижнее по схема положение. В процессе зарядки АБ напряжение на резисторах R1 и R2 возрастает, и при достижении на базе VT1 отпирающего напряжения, транзисторы VT1 и VT2 открываются, закрывая ключ VT3, VT4.

Реле К1 отключается, включая К2. Нормально замкнутые контакты К2.1 размыкаются и обесточивают зарядное устройство. Контакты К1.1 переходят в верхнее по схеме положение. Теперь напряжение на базе составного транзистора VT1, VT2 определяется падением напряжения на резисторах R1 и R2. По мере разряда АБ напряжение на базе VT1 снижается, и в какой-то момент VT1, VT2 закрываются, открывая ключ VT3, VT4. Снова начинается цикл зарядки. Конденсатор С1 служит для устранения помех от дребезга контактов К1.1 в момент переключения.

Регулировку устройства проводят без АБ и зарядного устройства. Необходим регулируемый источник постоянного напряжения с пределами регулировки 10. 20 В. Его подключают к выводам схемы вместо GB1.

Движок резистора R1 переводят в верхнее положение, а движок R5 — в нижнее. Напряжение источника устанавливают равным минимальному напряжению батареи (11.5. 12 В). Перемещением движка R5 добиваются включения реле К1 и светодиода VD7. Затем, поднимая напряжение источника до 14,2. 14,5 В, перемещением движка R1 достигают отключения К1 и светодиода. Изменяя напряжение источника в обе стороны, убеждаются, что включение устройства происходит при напряжении 11,5. 12 В, а отключение — при 14,2. 14,5 В. На этом регулировка заканчивается.

В качестве R1 и R5 желательно применять многооборотные потенциометры типа СП5-3 или подобные.

Автоматическое отключение зарядного устройства для аккумулятора

Схема представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство, конечно если дополнить её трансформатором и выпрямителем, то получим полноценное ЗУ.

Начальная схема подвергалась некоторым изменением плата дорабатывалась в ходе испытаний конечную версию платы можно скачать в конце статьи.

Рассмотрим схему.

Как видим она до боли простая и содержит всего один транзистор, электромагнитное реле и мелочевку. У меня на плате также имеется диодный мост по входу и примитивная защита от переполюсовки (на схеме эти узлы не нарисованы).

На вход схемы подается постоянное напряжение зарядного устройства или любого другого источника питания, тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя. В моем случае схема на 8 ампер.

Как это работает — при подаче питания на вход схемы заряжается аккумулятор, в схеме есть делитель напряжения (R2, R3, R4) с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

По мере заряда напряжение на аккумуляторе будет расти, как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Читайте так же:
Для чего электроды э42а

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится.

Заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.

В схеме есть еще один светодиод, он светится постоянно, это по сути индикатор наличии напряжения на плате.

Как сказал ранее, делитель отслеживает напряжение непосредственно на аккумуляторе, следовательно, если аккумулятор будучи подключенным к зарядному устройству разрядиться до некоторого значения, схема автоматически сработает и процесс заряда возобновится.

Так как делитель подключен непосредственно к аккумулятору он будет его разряжать, но ток разряда такой мизерной, что его можно не принимать во внимание.

Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстрого заряжаемого аккумулятора. Я взял последовательно соединенные ионисторы и подсоединил вместо конденсатора.

Если брать конденсатор, то его напряжение должно быть 25-35 вольт, сперва подключаем ионисторы (в моём случаи) или конденсатор к выходу схемы соблюдая полярность,

по окончанию заряда сперва отключаем зарядное устройство от сети, затем аккумулятор иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятной.

Далее берем любой регулируемый источник питания, например лабораторный блок и выставим на нём то напряжение, до которого будет заряжаться наш аккумулятор и подключаем блок ко входу схемы.

Медленно вращаем подстроечный резистор до тех пор,

пока не сработает красный индикатор, после чего делаем один полный оборот подстроечника в обратном направлении, так как схема имеет некоторый гистерезис.

А теперь проверяем работу

Напряжение на ионисторах или конденсаторе, будет показывать мультиметр при достижении на них порогового значения система отключит питание.

Если напряжение снизится на АКБ, схема опять сработает и будет снова заряжать аккумулятор до заданного значения.

Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

Схема простого автоматического зарядного устройства автомобильного аккумулятора

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.3747);
  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Читайте так же:
Для чего нужен титан

Устройство разработано для зарядки 6 вольтовой герметичной свинцовой батареи детского электромотоцикла, однако с минимальными изменениями его можно применить для зарядки других типов аккумуляторных батарей (АКБ), с любым напряжением, для которых условием окончания заряда является достижение определённого уровня напряжения. В данном устройстве заряд батареи прекращается при достижении напряжения на клеммах 7.3В. Заряд ведётся не стабилизированным током, ограниченным на уровне 0,1С резистором R6. Уровень напряжения, при котором устройство прекратит заряд, задаётся стабилитроном VD1 с точностью до десятых долей вольта.

«Сердцем» схемы является операционный усилитель (ОУ), включённый как компаратор, и подключённый инвертирующим входом к источнику образцового напряжения (цепочка R1-VD1), а не инвертирующим к АКБ. Как только напряжение на АКБ превысит образцовое напряжение, компаратор переключится в единичное состояние, транзистор Т1 откроется и реле REL1 отключит АКБ от источника напряжения, одновременно подаст положительное напряжение на базу транзистора T1. Таким образом Т1 окажется открытым и его состояние уже не будет зависеть от уровня напряжения на выходе компаратора. Сам компаратор охвачен положительной обратной связью (R7), что создаёт гистерезис и приводит к резкому, скачкообразному переключению выхода и открыванию транзистора. Благодаря этому схема избавлена от недостатка подобных устройств с механическим реле, при котором реле издаёт неприятный дребезжащий звук из-за того, что контакты балансируют на границе переключения, но включение ещё не происходит. В случае отключения сетевого напряжения устройство возобновит работу, как только оно появится и не допустит перезаряда АКБ.

Устройство собрано из доступных деталей, начинает работать сразу, и не нуждается в настройке. Напряжение отключения зависит только от параметров стабилитрона. ОУ, указанный на схеме, может работать в диапазоне питающих напряжений от 3-х до 30 вольт и при подключении АКБ с другим напряжением, например 12V, необходимо подобрать стабилитрон на напряжение заряженной АКБ (14.4В).

Устройство собрано согласно схемы и рисунка печатной платы, проверено в работе.

Зарядные устройства с автоматическим отключением

Ресурс аккумуляторов зависит от многих факторов, в том числе от соблюдения режимов эксплуатации. Важно не допускать глубокой разрядки и избыточной зарядки. Для управления зарядкой Ni-Cd и Ni-MH аккумуляторов предназначены устройства, автоматически останавливающие её после накопления полного заряда, некоторые из них описаны в статье, предлагаемой вниманию читателей.

Зарядные устройства разной сложности и разных ценовых категорий для Ni-Cd и Ni-MH аккумуляторов выпускаются промышленностью. Простые обеспечивают зарядный ток в определённых пределах. Контроль зарядки такими устройствами осуществляет владелец доступным ему способом. Обычно это определённое время зарядки установленным током или достижение напряжения на аккумуляторе, соответствующего полной зарядке.

Последний способ считается более достоверным. При контроле напряжения нет необходимости поддерживать ток зарядки неизменным. Ток может быть в интервале от 0,1С до 2С, в зависимости от типа аккумулятора (С — ёмкость аккумулятора в А·ч). По мере накопления аккумулятором заряда напряжение на нём растёт до определённого значения. После накопления полной ёмкости рост прекращается, и напряжение на аккумуляторе немного уменьшается [1]. Если прекращать зарядку после достижения определённого напряжения на аккумуляторе, близкого к максимальному, не дожидаясь его понижения, аккумулятор будет заряжен практически полностью.

Реализовать функцию автоматического отключения несложно с помощью порогового элемента, например, триггера Шмитта или компаратора. В качестве прототипа ЗУ взято устройство с пороговым элементом на триггере Шмитта [2]. В нём есть контроль напряжения на аккумуляторе, который показывает полную зарядку, но нет функции автоматического прерывания зарядного тока. Прерывать зарядный ток можно, установив электронный ключ в цепь тока зарядки и управляя им от индикатора полной зарядки.

Для питания устройства использовано ЗУ мобильного телефона. Обычно их называют зарядка, и они обеспечивают стабильное напряжение 5 В и ток нагрузки 300. 700 мА (зависит от производителя и типа телефона, который комплектует устройство). Сначала устройство было проверено на макете. Ток зарядки аккумулятора ёмкостью 600 мА · ч был выбран 120 мА, т. е. 0,2С. Контролируемым напряжением на аккумуляторе определена точка перегиба зарядной характеристики на завершающем этапе зарядки. Было установлено напряжение отключения Uоткл=1,5 В. В результате требуемые параметры устройства подтвердились. Однако после монтажа в корпусе оказалось, что работает оно нестабильно. Время полной зарядки оказалось значительно меньше расчётного и различалось в разных циклах. Продолжительность работы на разрядку также неодинаково и показывает неполную зарядку аккумулятора.

Читайте так же:
Смазка для редуктора циркулярной пилы

Анализируя схему прототипа (фрагмент его схемы показан на рис. 1), я пришёл к выводу, что причина в очень малом токе базы транзистора 1VT1. Очевидно, что транзисторы 1VT1 и 1VT2 и резистор 1R5 сопротивлением 1 мОм установлены для уменьшения разрядки постоянно подключённого к ним аккумулятора.

Рис. 1. Фрагмент прототипа ЗУ

При расчёте режима автор [2] исходил из того, что триггер переключится при токе эмиттера составного транзистора 1VT1, 1VT2, равном 30 мкА. Однако он не учёл, что нагрузка этих транзисторов 1R7 = 10 кОм. При Uбэ1VT3 = 0,6. 0,7 В (как и других кремниевых транзисторов) транзистор 1VT3 открывается.

Такое напряжение на сопротивлении 10 кОм создаст ток 60. 70 мкА. Даже при наименьшем h21Э = 70 транзисторов 2SC3199, применённыхв составном транзисторе, такой ток в нагрузке обеспечит ток базы 1VT1 около 0,014 мкА, что вполне сопоставимо с обратным током коллектора IKO < 0,1 мкА для транзистора 2SC3199. Кстати, следует отметить, что на возможность влияния температуры на характеристики прибора указывает и автор [2].

Поэтому схема ЗУ доработана, она показана на рис. 2. При подаче питания на разъём XS1 зарядный ток протекает в основном через резистор R1, а также через резистор R3 и переход база-эмиттер транзистора VT2. Падение напряжения на резисторе R1 вызывает ток в цепи R2HL1, и светодиод светит и сигнализирует о режиме зарядки аккумулятора.

Рис. 2. Доработанная схема ЗУ

Пороговое устройство собрано на транзисторах VT3 и VT4. В цепь эмиттера транзистора VT3 в прямом направлении включён стабилитрон VD1. Суммарное напряжение последовательно включённых p-n переходов транзистора и стабилитрона определяет напряжение их открывания — примерно 1,35 В.

В процессе зарядки аккумулятора G1 напряжение на нём растёт. Вместе с ним растёт ток базы транзистора VT3 и соответственно ток в цепи его коллектора и через резистор R7. Когда напряжение на этом резисторе достигнет напряжения открывания транзистора VT4, напряжение на его коллекторе увеличится, и за счёт положительной обратной связи через резистор R9 транзисторы VT3 и VT4 переключатся в открытое состояние (режим насыщения). Потечёт ток через резистор R5, светодиод HL2 и переход база-эмиттер транзистора VT1. Последний откроется, напряжение на его коллекторе и, соответственно, на базе транзистора VT2, уменьшится, он закроется, и зарядка прекратится. Светодиод HL2 сигнализирует об этом.

Фильтр R4C1 подавляет пульсации питающего напряжения. Резистор R8 ограничивает ток коллектора VT3 и ток базы VT4 до безопасного значения.

В конструкции [2] автор применил на входе порогового элемента составной транзистор для уменьшения тока, потребляемого им от неотключаемого аккумулятора. В предложенном варианте ток управления пороговым устройством во время его срабатывания (ток разрядки аккумулятора G1 после отключения питания имеет такое же значение) не превышает 8 мкА. Такой ток за один месяц разрядит аккумулятор ёмкостью 600 мА · ч менее чем на 1 % его ёмкости, что сравнимо с током саморазрядки Ni-Cd аккумуляторов. При этом расчёте не учитывается уменьшение тока при снижении напряжения на аккумуляторе, которое, как известно, и при отсутствии внешней разрядной цепи уменьшается сразу после отключения от источника зарядного тока. Кроме того, ток через резистор R6 существенно уменьшается при уменьшении напряжения на аккумуляторе и практически прекращается, когда напряжение аккумулятора снижается до 1,35 В.

Транзистор КТ815 может быть с любым буквенным индексом, его можно заменить на транзистор серии КТ830 или другой, отечественного или импортного производства с допустимым током коллектора не менее 0,5 A и напряжением насыщения не более 0,5 В. Транзистор VT1 — КТ315, КТ3102 с любым буквенным индексом. Транзистор VT3 — КТ3102Г-КТ3102Е или другой структуры n-p-n отечественного или импортного производства, имеющий h21э > 150 и Iко < 0,015 мкА, VT4 — любой маломощный соответствующей структуры. Стабилитрон VD1 следует подобрать по наибольшему прямому напряжению. Сделать это можно с помощью омметра по наибольшему сопротивлению. Проверка некоторых типов диодов показала, что такие экземпляры чаще встречаются среди низковольтных стабилитронов и варикапов КВ109. Светодиоды — серии АЛ307 или другие отечественные или импортные с прямым током до 20 мА, желательно разного цвета свечения для большей информативности о режиме работы. Конденсатор С1 — оксидный К50-35 или импортный, конденсатор С2 — керамический или плёночный. Резисторы — МЛТ или любые другие, подходящие по мощности и размерам. Розетка XS1 — микроUSB, SA1 — выключатель электробритвы.

Читайте так же:
Напильник по дереву как называется

Устройство собрано в корпусе электробритвы SUNNI RM-109 на имеющейся плате, с которой удалены детали и часть печатных проводников. Монтаж проведён с помощью проволочных перемычек, светодиоды установлены рядом против окна в корпусе, в которое выходил индикаторный светодиод исходной конструкции. Резистор R1 следует установить как можно дальше от транзистора VT3 и стабилитрона VD1.

Для налаживания в собранную конструкцию на место аккумулятора G1 устанавливают истощённый щелочной элемент типоразмера АА. Подключают устройство к тому источнику питания, с которым впоследствии оно будет работать. К элементу подключают вольтметр, следят за его показаниями в процессе зарядки и определяют напряжение отключения. Если оно отличается от 1,5 В (или другого, если выбрано таковое), корректируют его подборкой резистора R6. При увеличении сопротивления резистора напряжение отключения увеличивается, а при уменьшении — уменьшается. После того, как выбранное напряжение отключения установлено, нужно несколько раз проверить его отключением и подключением зарядного устройства к сети. Если результат подтверждается, надо установить на место элемента аккумулятор, который будет работать в приборе.

Такое устройство можно использовать для зарядки аккумуляторов ёмкостью до 2,8 А·ч, т. е. практически всей номенклатуры имеющихся в продаже аккумуляторов. Для этого следует подобрать резистор R1 так, чтобы ток зарядки Iзар = 0,3 А. Для аккумуляторов ёмкостью 0,6 А·ч это будет 0,5С, а ёмкостью 2,8 А·ч — 0,1С.

При этом R1 = (5 — (UнacVT1 + UG1))/Iзар = (5 — (0,5+1,5))/0,3 = 10 Ом, где U нacVT1 — напряжение насыщения коллектор-эмиттер транзистора VT1. Соответственно надо пересчитать резистор R3, чтобы транзистор VT2 при токе коллектора 0,3 A находился в режиме насыщения. Для этого ток базы должен быть Iб = Iзар/10. Для КТ815В R3 = 100 Ом.

Почти не изменяя схему устройства, можно заряжать два аккумулятора (рис. 3). Но измерение напряжения происходит только на одном из них. Расчёт сопротивления резисторов R1 и R3 описан выше. На место VT2 следует установить транзистор серии КТ815, так как сопротивление резистора R3 будет мало, поскольку ток коллектора транзистора VT2 при отключении зарядки будет значительным.

Рис. 4. Схема компаратора

Повысить точность и стабильность отключения процесса зарядки можно, если применить компаратор (рис. 4). При этом входной ток компаратора не превысит 0,25 мкА. Подойдёт микросхема сдвоенного компаратора с низким напряжением питания, например, КР1464СА1 [3] или LM393. В качестве управляющего ключа применён полевой транзистор КП406А3 или импортный 3055L. Можно попробовать и другие, управляемые логическими уровнями на затворе. При налаживании следует учитывать, что увеличение сопротивления резисторов R4 и R12 приведёт к уменьшению порога переключения. Увеличение сопротивления резисторов R7 и R13 приведёт к увеличению порога переключения. Увеличение сопротивления резисторов R6 и R14 приведёт к уменьшению гистерезиса.

1. Новые виды аккумуляторов. — Радио, 1998, № 1, с. 49.

2. Бутов А. Доработка электробритвы. — Радио, 2012, № 8, с. 50, 51.

3. К1464СА1. Сдвоенный компаратор напряжения. — URL: https://ecworld.ru/support/ ssf/ds/k1464sa1.pdf (14.06.20).

Автор: В. Степанов, г. Егорьевск Московской обл.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Компания GFS

Зарядные устройства GFS — новейшая разработка в области обслуживания тяговых аккумуляторных батарей. Их отличает современный дизайн, компактные размеры и наличие новых дополнительных фунций для удобства их эксплуатации.

Предприятие основано в 1984 г., головной офис находится в г. Готтенхайм, там же располагается основное производство. Продукция GFS — образец немецкого качества и надежности.

Серия Pulse Line

Запатентованное зарядное устройство GFS серии pulse line оборудовано новой зарядной технологией PLS , с характеристикой заряда WoWpWa и идеально подходит для заряда мало обслуживаемых тяговых батарей, работающих в экстремальных условиях эксплуатации. Оно специально разработано для периода заряда 6-8 часов, но может использоваться в более длительных периодах заряда. GFS импульсная система заряда позволяет сократить время заряда батареи, без применения системы воздушного перемешивания электролита.

Для автоматического контроля заряда, с характеристикой заряда WoWpWa , используется микропроцессор. Мощность, требуемая для полного заряда батареи, оптимально выбирается в течение основной фазы заряда и высчитывается исходя из остаточной ёмкости батареи. После полного заряда батареи зарядное устройство автоматически выключается. Индикаторы( LED ) отображают режим работы зарядного устройства.

Читайте так же:
Для чего проводится термическая обработка стали

Свойства

  • сбалансированный процесс заряда
  • автоматическая задержка на включение для последующего тестирования
  • автоматическое выключение после полного заряда батареи
  • автоматическая регулировка заряда батареи
  • индикация температуры трансформатора
  • заряд с отчётливым уменьшением фактора нагрузки
  • регулировка трансформатора в зависимости от ёмкости батареи
  • автоматическое выключение при сбое
  • индикация режима работы с помощью индикатора( LED ).
  • сохранение данных заряда
  • инфракрасный интерфейс для считывания данных заряда

Особенности

  • увеличение срока службы батареи
  • минимальное увеличение температуры электролита
  • уменьшение газовыделения
  • уменьшение стоимости обслуживания
  • уменьшение потребления электроэнергии и воды
  • удобное и быстрое изменение параметров

Опции

  • триггер для автоматической доливки воды
  • RS -232 интерфейс для считывания данных заряда
  • цифровой дисплей для индикации заряда

Серия Vario Line

Зарядное устройство GFS серии vario line оборудована новой зарядной технологией PLS , с функцией заряда IUIa , и специально разработана для определённых условий эксплуатации. Оно идеально подходит для заряда необслуживаемых тяговых батарей большой ёмкости при нормальных условиях эксплуатации, но также может использоваться для заряда мало обслуживаемых батарей. Для автоматического контроля заряда, с характеристикой заряда IUIa , используется микропроцессор. Мощность, требуемая для полного заряда батареи, оптимально выбирается в течение основной фазы заряда и высчитывается исходя из остаточной ёмкости батареи. После полного заряда батареи зарядное устройство автоматически выключается. Индикаторы( LED ) отображают режим работы зарядного устройства.

Свойства

  • сбалансированный процесс заряда
  • автоматическая задержка на включение для последующего тестирования
  • автоматическое выключение после полного заряда батареи
  • автоматическая регулировка заряда батареи
  • индикация температуры трансформатора
  • заряд с регулированием характеристик заряда
  • автоматическое выключение при сбое
  • индикация режима работы с помощью индикатора( LED ).
  • сохранение данных заряда
  • инфракрасный интерфейс для считывания данных заряда

Особенности

  • универсальность для заряда необслуживаемых и мало обслуживаемых батарей
  • увеличение срока службы батареи из-за малого температурного эффекта заряда
  • оптимальный заряд с компенсацией скачков напряжения и тока
  • удобное и быстрое изменение параметров

Опции

  • триггер для автоматической доливки воды
  • RS -232 интерфейс для считывания данных заряда
  • цифровой дисплей для индикации заряда
  • воздушный насос для циркуляции электролита

Серия Standard Line

Зарядные устройства GFC серии standard line оборудованы современной электроникой предназначены для заряда малобслуживаемых батарей. Они были специально спроектированы для периода зарядки от 8,5 до 14 часов.

Полностью автоматизированный зарядный процесс в соответствии с Wa -характеристиками контролируется микропроцессором. Требуемая величина тока для полной зарядки определяется состоянием батареи. Этот зарядный метод ведет к оптимальному, и энергосберегающему процессу зарядки батареи. В случае сбоя сети, предусмотрено безопасное отключение, которое прерывает процесс зарядки.

Свойства

  • сбалансированный процесс заряда
  • автоматическая задержка на включение для последующего тестирования
  • автоматическое выключение после полного заряда батареи
  • автоматическая регулировка заряда батареи
  • температурный контроль трансформатора
  • автоматическое выключение при сбое
  • сохранение данных заряда
  • интерфейс RS 232 для считывания информации о заряде

Особенности

  • проверенная технология для короткого зарядного периода
  • оптимизированная зарядка батарей
  • простота эксплуатации

Опции

  • триггер для автоматической доливки воды
  • цифровой дисплей для индикации заряда
  • воздушный насос для циркуляции электролита

Серия Economic Line

Зарядные устройства GFS серии economic line оборудованные новой зарядной технологией PLS, с характеристикой заряда Wa, отлично подходят для зарядки батарей работающих в нормальных условиях эксплуатации. Они были специально разработаны для периода зарядки от 10 до 14 часов, но благодаря своим характеристикам могут также использоваться для более короткого периода заряда.

Полностью автоматизированная последовательность операций зарядного процесса в соответствии с Wa -характеристиками, контролируется по времени и зависит от состояния батареи. После завершения процесса заряда, система отключается автоматически. Текущее состояние отражается на световых диодах.

Свойства

  • сбалансированный процесс заряда
  • автоматическая задержка на включение для последующего тестирования
  • автоматическое выключение после полного заряда батареи
  • автоматическая регулировка заряда батареи
  • температурный контроль трансформатора
  • автоматическое выключение при сбое
  • индикация режимов работы светодиодами

Особенности

  • низкая стоимость
  • проверенная технология зарядки
  • простота эксплуатации
  • мнгофункциональный дизайн

Все зарядные устройства предоставляются с питающим кабелем и штепсельной вилкой, и кабелями для батареи (без разъёма).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector