Opori-osveshenia.ru

Опоры освещения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиосхемы Схемы электрические принципиальные

Радиосхемы для дома своими руками

Такое автоматическое устройство управления освещением пригодно скорее для различных подсобных помещений: подъездов, хранилищ и так далее, так как оно может включать свет не просто с наступлением темноты, но и реагировать на присутствие людей.

Принцип работы устройства

Автомат управления освещением имеет два датчика:
1. Световой, который определяет необходимость включить свет
2 Звуковой (микрофон), который определит есть-ли люди в помещении.
Но кроме этого устройство имеет еще и таймер- то есть освещение включится лишь 1 минуту.

схема и описание устройства управления освещением

Схема автомата управления освещением показана на рисунке ниже:

автомат управления освещением схема

Датчиком света является старый фотодиод ФД320. Такие фотодиоды применялись в системах дистанционного управления отечественных телевизоров 80-90-годов. Несмотря на то что этот фотодиод предназначался для ИК-излучения, он с тем же успехом реагирует и на видимый свет. Здесь фотодиод включен как фоторезистор. То есть, он повернут в обратном направлении и его обратное сопротивление вместе с сопротивлением резистора R6 образует делитель напряжения.

Схема универсальна, и вместо ФД320 здесь можно использовать другой фотодиод, фототранзистор или фоторезистор. Единственная трудность в том что это может потребовать замены резистора R6 резистором другого сопротивления. Сопротивление R6 должно быть в максимальном состоянии равно или на 20-30% меньше сопротивления фотодатчика в темноте. Делитель R6-FD1 должен работать так чтобы в темноте напряжение на FD1 было в зоне логической единицы для элемента D1.2, а на свету снижалось до логического нуля. Таким образом, если светло (то есть, нет необходимости в дополнительном освещении) на выводе 13 D1.2 есть логический ноль. Так как это элемент «И-НЕ» на его выходе при этом будет логическая единица независимо от уровня на его втором входе. На выходах параллельно включенных элементов D1.3 и D1.4 при этом логический ноль. Напряжение на затворах транзисторов VT1 и VT2 низко и поэтому они закрыты. Ток на лампу Н1 не поступает.

Если темно сопротивление FD1 высокое, выше установленного сопротивления R6, поэтому напряжение на FD1 находится в зоне логического нуля. Теперь состояние выхода элемента D1.2 может изменяться под действием логического уровня на его втором входе. То есть, по сигналу от схемы акустического датчика.

Одно уточнение по поводу оптического датчика, он предназначен для случая установки схемы в помещении с окнами или окном для поступления света с улицы (естественного освещения). И его назначение в определении времени суток — дня или ночи, а не в контроле за освещением помещения. Датчик должен устанавливаться так чтобы он «видел» только свет с улицы, а не поступающий из помещения. Фотодиод нужно поместить в трубку, ограничивающую угол попадания света на него и приклеить эту трубку прозрачным клеем к оконному стеклу так чтобы датчик «смотрел» на улицу. Если датчик будет «смотреть» в помещение, то он будет реагировать на включение искусственного освещения и схема будет ошибаться.

В том случае, когда схема должна работать в помещении без окон, то есть, необходимость в искусственном освещении имеется в любое время суток, фотодатчик не нужен. В этом случае детали R6.FD1.C4 не устанавливаются, а вывод 13 D1 нужно соединить с её выводом 12.

Акустический датчик построен на основе электретного микрофона М1. Питание на его встроенный усилитель поступает через R1, этот же резистор служит и нагрузкой. Обычно в таких схемах усилитель-детектор делают на операционных усилителях или транзисторах. Но существуют индикаторные микросхемы для светодиодной индикации уровня 34 сигнала на шкале из нескольких светодиодов. Такая микросхема в данном случае более удобна, так как уже содержит и усилительные каскады и детектор и усилители постоянного тока. К тому же у неё есть пять выходов разной чувствительности. Это можно использовать для ступенчатой регулировки чувствительности акустического датчика, путем перестановки перемычки.

Сигнал с микрофона поступает на вход микросхемы А1. Микросхема AN6884 предназначена для работы в схеме индикатора «светящийся столб». На её пяти выходах есть транзисторные ключи с открытыми коллекторами, которые открываются в зависимости от уровня сигнала. Ключи имеют ограничители тока, чтобы можно было работать со светодиодами без дополнительных резисторов. Эти ограничители тока в данной схеме немного мешают, так как от их работы зависит напряжение логического нуля. Резистор R4 установлен чтобы подтянуть выход А1 к единице, но подтянуть не слишком сильно, так чтобы и уровень логического нуля оставался на приемлемом для КМОП логике уровне напряжения. В процессе налаживания сопротивление R4 нужно подобрать так, чтобы напряжение на выходе микросхемы А1 менялось от логического нуля до логической единицы, то есть, не уже диапазона 1.5…5V.

Читайте так же:
Телега для снегохода своими руками

Схема задержки выключения сделана на конденсаторе СЗ и резисторе R5. При достаточном уровне звукового сигнала напряжение на подключенном выходе А1 падает до логического нуля. При этом открывается диод VD1 и через него разряжается конденсатор СЗ до напряжения логического нуля. На выходе элемента D1.1 появляется логическая единица. Если на выводе 13 D1.2 тоже логическая единица (или выводы 12 и 13 соединены вместе), то на выходах D1.3 и D1.4 будет единица. Это напряжение поступает на затворы VT1 и VT2 и открывает их. Ток поступает на лампу Н1.

Диоды VD3, VD4 и резистор R7 служат для уменьшения влияния емкости затворов полевых транзисторов.

Возможно два случая работы схемы на включение. В первом случае раздается один непродолжительный звук, например, звук открывающейся двери. Конденсатор СЗ разряжается, но потом начинает заряжаться через резистор R5. В этом случае лампа будет оставаться включенной в течение одной минуты, пока конденсатор СЗ заряжается. Если в это время раздается еще звук или звуки, например, открыли дверь в квартиру, то выдержка повторяется.

Во втором случае звуки раздаются либо не прерывно, либо с перерывами не более 1 минуты. Например, в подъезде разговаривают люди или проводится какой-то ремонт. В этом случае конденсатор СЗ будет постоянно поддерживаться в разряженном состоянии и свет выключится только через минуту после наступления тишины.

Питается «электроника» от источника на диоде VD5, гасящем избыток напряжения резисторе R8, стабилитроне VD2 и сглаживающем пульсации конденсаторе С5.

Конструкция и детали автомата

Большинство деталей расположено на печатной плате из фольгированного стеклотекстолита. На рисунках приведены схемы расположения дорожек и деталей. Рисунок на плату нанесен ручным способом с помощью линейки и маркера для письма на компакт-дисках. Сначала фольгированный слой обезжиривают, затем его нужно немного зашлифовать мелкой шкуркой («нулевкой»). После этого заготовку нужно подложить под бумажную схему платы и тонким шилом слегка накернить места расположения отверстий. Далее, отверстия нарисовать маркером, а потом пользуясь линейкой и тем же маркером соединить эти отверстия согласно схеме расположения дорожек.

Травление в растворе хлорного железа. Смыть с дорожек краску маркера можно одеколоном или любым растворителем для лаков и красок (одеколоном смывается легче и чище) Далее, — просверлить отверстия и приступать к монтажу.

Детали

Микросхему AN6884 можно заменить аналогом другой фирмы, например, LB1413, LB1423, LB1403 или другим аналогом, которых очень много.

Все конденсаторы должны быть на напряжение не ниже 10V. Конденсатор СЗ должен быть новым (не с демонтированной платы), и с минимальным током утечки. При большом токе утечки СЗ схема может быть неработоспособной.

Стабилитрон КС168 можно заменить любым стабилитроном на напряжение 6-8V. Диоды 1N4148 можно заменить на КД521, КД522. Диод 1N4007 можно заменить на КД209.

Электретный микрофон — любой, со встроенным предусилителем. Можно использовать микрофон от электронного телефонного аппарата, сотового телефона, диктофона. При подключении учитывать полярность.

Фотореле. Автоматическое управление освещением. Световое реле. Автомат включения / выключения света — схема, конструкция, устройство

В нашем поселке установлено уличное освещение. Сначала решили, что староста будет вечером включать его, а утром отключать. Но человек — очень ненадежный автомат. Тогда было установлено магазинное световое реле на основе механических контактов. В условиях высокой влажности и морозов оно также не продемонстрировало свою надежность. Тогда я изготовил фотореле без движущихся контактов, которое проработало уже 6 лет и продолжает успешно управлять освещением. Нагрузкой схемы служат мощные натриевые лампы. Тиристор установлен на радиаторе. Схема помещена в металлический корпус. С одной его стороны просверлено отверстие, оно заклеено кусочком оргстекла, к нему приклеен прозрачным клеем фоторезистор. С этой стороны корпуса размещена управляющая схема. Она полностью залита битумной мастикой. Тиристор на радиаторе установлен во второй части корпуса. Монтировать реле надо так, чтобы фоторезистор был обращен к небу, и было полностью исключено попадание на него света от ламп и других искусственных источников света.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Читайте так же:
Самодельные грунтозацепы для автомобиля

Схема основана на тиристорном коммутаторе силовых нагрузок. Там приведено термореле, мы будем делать фотореле. Все детали силового выключателя такие же, как в схеме по ссылке. Я использовал схему на симисторе, но ничто не мешает взять за основу схему на несимметричном тиристоре. Вы легко сможете внести необходимые изменения самостоятельно.

D1 — операционный усилитель с высоким входным сопротивлением и однополярным питанием 15 вольт, например, 544УД1. R1 — фоторезистор на 33 кОм. R2 — 33 кОм. Подбирая этот резистор, обеспечиваем включение и выключение при нужном значении яркости. Вместо этого резистора можно временно поставить переменный резистор на 47 кОм. Настроить, отпаять переменный резистор, измерить полученное сопротивление и поставить подходящий постоянный. Оставлять переменный резистор нельзя, так как он в условиях повышенной влажности и перепадов температуры работает ненадежно. R3, R4, — по 20 кОм. R5 — 200 кОм. Этот резистор обеспечивает небольшой гистерезис для того, чтобы избежать частых включений и выключений время восхода или заката. C1 — 0.1 мкФ. Он нужен для фильтрации помех.

Реле времени

Страдая природной рассеянностью, я нередко забывал выключить освещение на своем участке. Выйдешь вечером, включишь свет, потом всю ночь он горит. Как я уже писал, человек очень плохо справляется с функциями автомата. Но он может сделать автомат. Так я и поступил. Приведенная схема сама выключит свет через некоторое время после включения. Если это произойдет слишком рано, то свет можно опять включить, нажав на кнопку.

R1 — 50 Ом. Он ограничивает ток зарядки конденсатора. Кнопка — она должна замыкать контакты только в момент нажатия, не должна фиксироваться. Кнопка должна быть рассчитана на работу в осветительной сети 220 В, так как она гальванически связана с высоким напряжением. R2 — 500 кОм. C1 — 10 000 мкФ. При таких значениях R2 и C1 задержка выключения будет около часа. Рассчитать значения этих элементов для другого времени задержки. В форме нужно указать начальное значение напряжения на конденсаторе 15 В, конечное 7.5 В, напряжение источника питания 0 В. Так как, когда схема включена, конденсатор разряжается от напряжения питания (15 В) до половины напряжения питания (7.5 В) (именно приблизительно при этом напряжении произойдет выключение). При этом он к цепям питания н подключен, так что питание на нем равно нулю.

Все остальные детали, как в предыдущей схеме.

Устройство собирается в изоляционном корпусе, исключающим контакт человека с сетевым напряжением.

1 2 3

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Детектор, датчик, обнаружитель скрытой проводки, разрывов, обрывов. Сх.
Схема прибора для обнаружения скрытой проводки и ее разрывов для самостоятельног.

Тиристорные включающие, выключающие, переключающие, коммутирующие, ком.
Управление тиристорным силовым ключом с помощью оптрона. Гальваническая развязка.

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Датчик уровня жидкости. Реле. Автоматическое включение / выключение на.
Автомат наполнения емкости с водой включает и выключает насос в зависимости от у.

Плавная регулировка яркости свечения галогенных, газоразрядных, неонов.
Схема устройства для плавного изменения яркости свечения газоразрядных ламп с пи.

Автоматы лестничного освещения

Обычная проводка для освещения состоит из выключателя и лампочки, включенных последовательно в электро­сеть. Сложнее дело, когда нужно организовать управление одной лампочкой из двух мест, например, если это освещение коридора, рис.1

Данная схема, электронный выключатель, управляемый по квазисенсорному принципу, то есть, кнопками без фиксации. В этом случае каждая кнопка будет находиться в замк­нутом положении только в момент выпол­нения управления. Далее она будет в разомкнутом состоянии. Это позволит параллельно одной кнопке включить практически неограниченное количество других кнопок, каждой из которых можно будет управлять выключателем. То есть, уже можно сделать не два места управления, а неограниченное количество мест управления, хоть сотню, если это необходимо.

Без триггера все же обойтись не удалось, но он был собран на инверторах, конкретно на D1.1 и D1.2. Практически это триггер Шмитта, который, как и любой другой триггер имеет свойство устанавливаться в двух фиксированных состояниях.

При нажатии кнопки S1 на вход элемента D1.1 подается логи­ческая единица от источника питания. На выходе D1.1 при этом, ноль, а на выходе D1.2, — единица. Но единица с выхода D1.2 через резистор R2 посту­пает на вход D1.1. Поэтому, когда кнопку S1 отпускаем схема на D1.1-D1.2 остается в поло­жении — единица на выходе D1.2.

Читайте так же:
Ютуб антенна для цифрового тв своими руками

Если нажать на кнопку S2 на вход элемента D1.1 поступает напряжение логического нуля. На его выходе будет при этом логическая единица, а на выходе D1.2 опять нуль. Этот нуль пойдет через R2 на вход D1.1. Отпус­каем кнопку, и состояние остается в положении — ноль на выходе D1.2.

Таким образом, кнопками S1 и S2 можно менять устойчивые состояния триггера Шмитта на инверторах D1.1 и D1.2. Но, так как кнопки замыкаются только на время нажатия, параллель­ной каждой из них можно подключить любое n-ное количество кнопок, действие которых будет равноценным.

Транзистор VT1 работает без радиатора. При мощности лампы до 200W ему радиа­тор не требуется.

Транзистор КП707В2 можно заменить зарубежными аналогами, — IRF840 или BUZ90. Либо подобрать другие аналоги по справочникам.

Диоды КД522 можно заменить любыми импульсными диодами, таким как КД521, 1N4148 или другими.

Диод 1N4007 — любой выпрямительный диод на напряжение не ниже 400V и ток не ниже 1А.

Стабилитрон Д814Г можно заменить любым стабилитроном на напряжение 10- 12V и мощность не ниже 0,5W. Есть много подходящих импортных стабилитронов, например, 1N4699, 1N5927, 1N5242 и другие аналогичные.

На рисунке 5 показан вариант схемы, в котором управление осуществляется только одной кнопкой. После её нажатия лампа горит столько времени, сколько нужно на зарядку С1 через R1. Затем гаснет.

Выключатель с задержкой

В длинных коридорах, на лестничных клетках, на предприятиях устанавливают выключатели с задержкой выключения. При нажатии на кнопку такого выключателя светильник включается, и выключается автоматически, спустя некоторое время.

Разработанный выключатель, показанный на рис.2, особенный тем, что в то время, когда светильник выключен, вся схема полностью отключена от электросети. Здесь нагрузка коммутируется электромагнитным реле К1.

Включается светильник кнопкой S 1. При нажатии через её контакты поступает напряжение на источник постоянного тока, выполненный на элементах R 1- R 2- R 3- VD 2- VD 5- VD 1- C 1. Резисторы R 1- R 3 выполняют роль гасящего сопротивления, а стабилитрон VD 1 ограничивает напряжение питания микросхемы D 1 на уровне 12-13 В. В момент появления напряжения на С1 конденсатор С2 разряжен, и на входах элемента D 1 нулевое напряжение, на его выходе единица, и транзистор VT 1 открывается, а через него подается ток на обмотку реле К1. Реле замыкает свои контакты К1.1. Теперь можно кнопку S 1 отпустить, но лампа все равно продолжит светиться. Это будет продолжаться до тех пор, пока С2 заряжается до единицы, а потом реле отпускает и все устройство, вместе с лампой Н1, отключается от электросети. Резистор R 4, казалось бы не нужен, но он несет важную функцию. Дело в том, что после выключения от сети транзистор VT 1 оказывается закрытым и такой мощный потребитель энергии как обмотка реле К1 отключается. Это приводит к тому, что на конденсаторе С1 довольно продолжительное время удерживается заряд и если разрядка конденсатора С2 произойдет ранее, чем разрядка С1, может повторно включится. Чтобы этого не произошло создана разрядная цепь – К1- R 4, ускоренно разряжающая конденсатор С1 после выключения.

В схеме можно использовать любые микросхемы серии К561, К1561, К564 имеющие хотя – бы один логический инвертор. Все входы элемента (сколько их есть) соединяют вместе. Входы всех неиспользованных элементов микросхемы нужно соединить с положительным или отрицательным выводом питания микросхемы, чтобы защитить микросхему от повреждения статическими разрядами.

Автоматический выключатель освещения

Схема устройства, показанное на рис.3, предназначено для автоматического выключения освещения по истечении определенного времени.

В исходном состоянии конденсатор С1 заряжен, ток через него не протекает и тиристор VS 1 заперт – лампа HL 1 (мощностью до 440 Вт) не светится. Кратковременное нажатие на кнопку SB 1 приводит к быстрому разряду конденсатора С1 через резистор R 3, после чего С1 начинает заряжаться через R 2, R 1, VD 1, а разрядный ток открывает тиристор VS 1, и лампа светится. Так продолжается от 60 до 150 секунд (выдержка зависит от положения движка R 2), пока экспоненциально уменьшающийся ток не снизится до предела, при котором VS 1 уже не открывается. Лампа гаснет, и устройство опять переходит в ждущий режим. Тиристор необходимо установить на радиатор размерами 60 х 20 мм.

Читайте так же:
Паяльник от прикуривателя своими руками

Автомат лестничного освещения

Известно, что на ночное освещение подъездов многоэтажных домов тратится огромное количество электроэнергии, причем большая часть времени свет горит напрасно. Хронометраж показывает, что освещать подъезд требуется всего 40…50 мин в сутки. Чтобы избежать ненужных трат электроэнергии, необходимо оснащать подъезды и лестничные клетки домов автоматами, включающими свет на непродолжительное время и только тогда, когда в этом есть необходимость.

Схема автомата для освещения лестничной площадки показана на рис.4.

Он содержит реле времени на тиристоре VS 1, конденсаторе C 1, диоде VD 1 и фазосдвигающую цепь R 2 C 2. Диодный мост VD 2 обеспечивает работу тиристора в положительных и отрицательных полупериодах сетевого напряжения.

Чтобы включить свет в подъезде (лампы EL 1- ELn ), достаточно кратковременно нажать на любую из установленных в удобных местах и соединенных параллельно кнопок SB 1- SBn . При этом конденсатор С1 разрядится через резистор R 1, а после отпускания кнопки начнется его зарядка по цепи лампы освещения – диод VD 1 – управляющий электрод тиристора VS 1. Тиристор будет открыт, а свет в подъезде включен. Продолжительность этого интервала времени горения зависит от емкости конденсатора С1 и параметров тиристора.

На управляющий электрод тиристора через диод VD 3 поступает также напряжение с фазосдвигающей цепи R 2 C 2. Подбором ее элементов можно добиться того, что в интервалах между включениями освещения с помощью кнопок SA 1- SAn лампы будут тускло светиться, потребляя минимальную мощность. При указанных на схеме номиналах резистора R 2 и конденсатора C 2 лампами мощность около 12% номинальной, а яркость их свечения достаточна, чтобы найти кнопку в темном подъезде.

Кроме тиристора КУ202Л, можно использовать КУ202К, КУ202М, КУ202Н. При суммарной мощности ламп более 500 Вт, тиристор необходимо снабдить теплоотводом. Кнопки можно установить на дверцах распределительных электрощитов, имеющихся на каждой лестничной площадке. Длина идущих к кнопкам проводов должна быть достаточной, чтобы дверца щита открывались полностью.

Схемы фотореле для управления освещением

ФотодиодОдной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Схема простого фотореле

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, — зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Схема фотореле с фотодиодом

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, — питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым — задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Микросхема КР1182ПМ1

Рис. 3. Микросхема КР1182ПМ1

Схема фотореле на микросхеме КР1182ПМ1

Рисунок 4 . Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector